留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1068
  • HTML全文浏览量:  441
  • PDF下载量:  51
  • 被引次数: 0
Pengqi Chen, Yunxiao Tai, Huan Wu, Yufei Gao, Jiayu Chen,  and Jigui Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1627-1634. https://doi.org/10.1007/s12613-021-2265-7
Cite this article as:
Pengqi Chen, Yunxiao Tai, Huan Wu, Yufei Gao, Jiayu Chen,  and Jigui Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1627-1634. https://doi.org/10.1007/s12613-021-2265-7
引用本文 PDF XML SpringerLink
研究论文

限域燃烧法制备高电氧化反应性能纳米碳化钨/碳粉末

  • 通讯作者:

    程继贵    E-mail: jgcheng@hfut.edu.cn

文章亮点

  • (1) 创新性地将限域法和燃烧合成法结合起来。
  • (2) 添加的活性炭成功地限制了碳化钨颗粒的晶粒生长。
  • (3) 原位碳化过程有效地限制了颗粒长大并提高了分散性。
  • 碳化钨(WC)被认为是一种很有前途的、可以在化学反应中代替铂、铑等贵重金属的类铂催化剂。但是,就目前的研究来看,其电化学催化性能与贵金属相比还存在一定的差距,尚不具备实用价值。本文旨在制备一种高比表面积的WC/C催化剂进而获得高电氧化反应性能。本文将活性炭引入燃烧体系中,通过溶液燃烧—碳化两步法合成了WC/C纳米粉体,研究了活性炭加入量对WC/C复合材料结构,形貌和氧化还原性能的影响,探究了活性炭作为载体在氧化还原过程中的作用。研究结果表明,碳的加入提高了WC/C复合材料的比表面积,限制了WC长大,提高了粉体的导电性和稳定性。WC分布在活性炭的表面、孔洞和缝隙中,分布在孔洞中的WC颗粒直径约为40~100 nm,分散均匀,而活性炭表面的WC颗粒直径约为200 nm。当碳与偏钨酸铵的质量比为1:15时具有更正的还原峰电位为−0.24V,对应的电流密度为2.4 mV/cm2;具有更正的半波电位,表现出更好的催化活性,根据K–L公式得出电子转移数目为3.45,说明该反应主要以四电子过程为主。
  • Research Article

    Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction

    + Author Affiliations
    • Nanosized tungsten carbide (WC)/carbon (C) catalyst was synthesized via a novel ultra-rapid confinement combustion synthesis method. The amount of activated carbon (AC) plays an important role in the morphology and structure, controlling both the precursor and final powder. The WC particles synthesized inside the pores of the AC had been 10–20 nm because of the confinement of the pore structure and the large specific surface area of AC. When used for oxygen reduction performance, the half-wave potential was −0.24 V, and the electron transfer number was 3.45, indicating the main reaction process was the transfer of four electrons. The detailed electrocatalytic performance and underlying mechanism were investigated in this work. Our study provides a novel approach for the design of catalysts with new compositions and new structures, which are significant for promoting the commercialization of fuel cells.
    • loading
    • [1]
      Z.S. Li, Z.S. Liu, B.L. Li, Z.H. Liu, D.H. Li, H.Q. Wang, and Q.Y. Li, Hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum nanocomposite as an efficient electrocatalyst for the oxygen reduction reaction, Electrochimi. Acta, 221(2016), p. 31. doi: 10.1016/j.electacta.2016.10.157
      [2]
      Z. Chen, M.L. Qin, P.Q. Chen, B.R. Jia, Q. He, and X.H. Qu, Tungsten carbide/carbon composite synthesized by combustion-carbothermal reduction method as electrocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 41(2016), No. 30, p. 13005. doi: 10.1016/j.ijhydene.2016.06.063
      [3]
      S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, and Y. Román-Leshkov, Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts, Science, 352(2016), No. 6288, p. 974. doi: 10.1126/science.aad8471
      [4]
      Y.N. Wang, L.P. Zhang, X.X. Meng, L. Feng, T. Wang, W.M. Zhang, and N.T. Yang, Scalable processing hollow tungsten carbide spherical superstructure as an enhanced electrocatalyst for hydrogen evolution reaction over a wide pH range, Electrochimi. Acta, 319(2019), p. 775. doi: 10.1016/j.electacta.2019.07.038
      [5]
      X. Fan, H. Zhou, and X. Guo, WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction, ACS Nano, 9(2015), No. 5, p. 5125. doi: 10.1021/acsnano.5b00425
      [6]
      J.J. Guo, Z. Mao, X.L. Yan, R. Su, P.F. Guan, B.S. Xu, X.F. Zhang, G.W. Qin, and S.J. Pennycook, Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction, Nano Energy, 28(2016), p. 261. doi: 10.1016/j.nanoen.2016.08.045
      [7]
      S.K. Kim, Y. Qiu, Y.J. Zhang, R. Hurt, and A. Peterson, Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction, Appl. Catal. B Environ., 235(2018), p. 36. doi: 10.1016/j.apcatb.2018.04.032
      [8]
      S. Najiba, S.J. Juhl, M. Mandal, C. Liu, A. Durygin, J.H. Chen, Y.W. Fei, N. Alem, and K. Landskron, Synthesis of nanopolycrystalline mesoporous diamond from periodic mesoporous carbon: Mesoporosity increases with increasing synthesis pressure, Scr. Mater., 162(2019), p. 350. doi: 10.1016/j.scriptamat.2018.10.024
      [9]
      J. Sun, B.L. Liang, Y.Q. Huang, and X.D. Wang, Synthesis of nanostructured tungsten carbonitride (WNxCy) by carbothermal ammonia reduction on activated carbon and its application in hydrazine decomposition, Catal. Today, 274(2016), p. 123. doi: 10.1016/j.cattod.2016.01.031
      [10]
      L.N. Zhang, Y.Y. Ma, Z.L. Lang, Y.H. Wang, S.U. Khan, G. Yan, H.Q. Tan, H.Y. Zang, and Y.G. Li, Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution, J. Mater. Chem. A, 6(2018), No. 31, p. 15395. doi: 10.1039/C8TA05007D
      [11]
      U. Kanerva, M. Karhu, J. Lagerbom, A. Kronlöf, M. Honkanen, E. Turunen, and T. Laitinen, Chemical synthesis of WC–Co from water-soluble precursors: The effect of carbon and cobalt additions to WC synthesis, Int. J. Refract. Met. Hard Mater., 56(2016), p. 69. doi: 10.1016/j.ijrmhm.2015.11.014
      [12]
      S.T. Hunt, M. Milina, Z.S. Wang, and Y. Román-Leshkov, Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles, Energy Environ. Sci., 9(2016), No. 10, p. 3290. doi: 10.1039/C6EE01929C
      [13]
      Y.T. Xu, X.F. Xiao, Z.M. Ye, S.L. Zhao, R.A. Shen, C.T. He, J.P. Zhang, Y.D. Li, and X.M. Chen, Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution, J. Am. Chem. Soc., 139(2017), No. 15, p. 5285. doi: 10.1021/jacs.7b00165
      [14]
      X.H. Zhao, B. Pattengale, D.H. Fan, Z.H. Zou, Y.Q. Zhao, J. Du, J.E. Huang, and C.L. Xu, Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction, ACS Energy Lett., 3(2018), No. 10, p. 2520. doi: 10.1021/acsenergylett.8b01540
      [15]
      Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, M. Wei, D.G. Evans, and X. Duan, Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction, Adv. Mater., 28(2016), No. 12, p. 2337. doi: 10.1002/adma.201505086
      [16]
      S.W. Liu, H.M. Zhang, Q. Zhao, X. Zhang, R.R. Liu, X. Ge, G.Z. Wang, H.J. Zhao, and W.P. Cai, Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions, Carbon, 106(2016), p. 74. doi: 10.1016/j.carbon.2016.05.021
      [17]
      B.W. Ren, D.Q. Li, Q.Y. Jin, H. Cui, and C.X. Wang, Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution, J. Mater. Chem. A, 5(2017), No. 25, p. 13196. doi: 10.1039/C7TA03364H
      [18]
      A. Varma, A.S. Mukasyan, A.S. Rogachev, and K.V. Manukyan, Solution combustion synthesis of nanoscale materials, Chem. Rev., 116(2016), No. 23, p. 14493. doi: 10.1021/acs.chemrev.6b00279
      [19]
      P.Q. Chen, M.L. Qin, Z. Chen, B.R. Jia, and X.H. Qu, Solution combustion synthesis of nanosized WOx: Characterization, mechanism and excellent photocatalytic properties, RSC Adv., 6(2016), No. 86, p. 83101. doi: 10.1039/C6RA12375A
      [20]
      X.Z. Cui, L.L. Zhang, L.M. Zeng, X.H. Zhang, H.R. Chen, and J.L. Shi, Fabrication of tungsten carbide nanoparticle-encased graphite-like mesoporous carbon as a precious metal-free electrocatalyst for oxygen reduction, J. Inorg. Mater., 33(2018), No. 2, art. No. 213. doi: 10.15541/jim20170305
      [21]
      I. Jeong, J. Lee, K.L. Vincent Joseph, H.I. Lee, J.K. Kim, S. Yoon, and J. Lee, Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell, Nano Energy, 9(2014), p. 392. doi: 10.1016/j.nanoen.2014.08.010
      [22]
      T. Li, X.B. Fu, Y.J. Xu, and D.L. Chen, Porous three-dimensional core-shell WC@C nanocomposite derived from tungsten-containing inorganic-organic hybrid precursor, Mater. Lett., 185(2016), p. 331. doi: 10.1016/j.matlet.2016.09.009
      [23]
      M. Nie, P.K. Shen, M. Wu, Z.D. Wei, and H. Meng, A study of oxygen reduction on improved Pt–WC/C electrocatalysts, J. Power Sources, 162(2006), No. 1, p. 173. doi: 10.1016/j.jpowsour.2006.07.015
      [24]
      J.T. Zhang, J.W. Jiang, H.L. Li, and X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci., 4(2011), No. 10, art. No. 4009. doi: 10.1039/c1ee01354h
      [25]
      S.S. Xu, M.Z. Wang, G. Saranya, N. Chen, L.L. Zhang, Y. He, L.L. Wu, Y.T. Gong, Z.Q. Yao, G.K. Wang, Z.B. Wang, S.J. Zhao, H. Tang, M.Y. Chen, and H.Y. Gou, Pressure-driven catalyst synthesis of Co-doped Fe3C@Carbon nano-onions for efficient oxygen evolution reaction, Appl. Catal. B Environ., 268(2020), art. No. 118385. doi: 10.1016/j.apcatb.2019.118385
      [26]
      Q.S. Huang, P.J. Zhou, H. Yang, L.L. Zhu, and H.Y. Wu, CoO nanosheets in situ grown on nitrogen-doped activated carbon as an effective cathodic electrocatalyst for oxygen reduction reaction in microbial fuel cells, Electrochim. Acta, 232(2017), p. 339. doi: 10.1016/j.electacta.2017.02.163
      [27]
      Y. Shen, L. Li, J.Y. Xi, and X.P. Qiu, A facile approach to fabricate free-standing hydrogen evolution electrodes: Riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets, J. Mater. Chem. A, 4(2016), No. 16, p. 5817. doi: 10.1039/C6TA01236A
      [28]
      Z.W. Liu, X.T. Huo, K. Xi, P. Li, L.N. Yue, M. Huang, G.Q. Suo, L. Xu, W. Wang, and X.H. Qu, Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production, Energy Storage Mater., 10(2018), p. 268. doi: 10.1016/j.ensm.2017.06.011
      [29]
      H. Zhu, Z.N. Sun, M.L. Chen, H.H. Cao, K. Li, Y.Z. Cai, and F.H. Wang, Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media, Electrochim. Acta, 236(2017), p. 154. doi: 10.1016/j.electacta.2017.02.156
      [30]
      L. Song, T. Wang, Y.L. Wang, H.R. Xue, X.L. Fan, H. Guo, W. Xia, H. Gong, and J.P. He, Porous iron-tungsten carbide electrocatalyst with high activity and stability toward oxygen reduction reaction: From the self-assisted synthetic mechanism to its active-species probing, ACS Appl. Mater. Interfaces, 9(2017), No. 4, p. 3713. doi: 10.1021/acsami.6b14754

    Catalog


    • /

      返回文章
      返回