留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  3979
  • HTML全文浏览量:  964
  • PDF下载量:  64
  • 被引次数: 0
Panpan Wang, Haitao Jiang, Yujiao Wang, Yun Zhang, Shiwei Tian, Yefei Zhang, and Zhiming Cao, Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1559-1569. https://doi.org/10.1007/s12613-021-2268-4
Cite this article as:
Panpan Wang, Haitao Jiang, Yujiao Wang, Yun Zhang, Shiwei Tian, Yefei Zhang, and Zhiming Cao, Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1559-1569. https://doi.org/10.1007/s12613-021-2268-4
引用本文 PDF XML SpringerLink
研究论文

微量Ca和Sn对提高Mg–3Al–1Zn合金耐蚀性的作用

  • 通讯作者:

    江海涛    E-mail: jianght@ustb.edu.cn

文章亮点

  • (1)系统地研究了微量Ca和Sn对Mg–3Al–1Zn合金腐蚀性能的影响。
  • (2)揭示了微量Ca和Sn提高Mg–3Al–1Zn合金耐蚀性的内在机理并构建了腐蚀模型。
  • (3)AZ31–0.2Sn合金的耐腐蚀性能最好,AZ31–0.2Ca 次之,而 AZ31 合金最差。
  • 镁合金耐腐蚀性差极大限制了商用镁合金的广泛应用。微合金化是提高镁合金腐蚀性能最简单有效的方法。基于低成本合金成分设计,通过扫描开尔文探针力显微镜、析氢、电化学测试和腐蚀形态分析表征了含有微量 Ca 或 Sn 元素的商用 Mg–3Al–1Zn (AZ31) 合金的腐蚀行为。结果表明:在 AZ31 合金中,Al2Ca/α-Mg和Mg2Sn/α-Mg的电势差分别为 (230 ± 19) mV和(80 ± 6) mV,远低于Al8Mn5/α-Mg的电势差(430 ± 31) mV,即AZ31–0.2Sn合金的耐腐蚀性能最好,AZ31–0.2Ca 次之,而 AZ31 合金最差。此外,Sn溶入基体当中明显提高了α-Mg的电势,并在基体界面形成了致密的SnO2膜,而Ca元素通过富集在腐蚀产物层当中,使得AZ31–0.2Ca/Sn合金的腐蚀产物层比AZ31合金更加致密、稳定和更具保护性。因此,含0.2wt% Ca或Sn元素的AZ31合金表现出优异的耐腐蚀性能,具有更全面的商业应用潜力。
  • Research Article

    Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy

    + Author Affiliations
    • The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance. Addition of alloying elements is the simplest and effective method to improve the corrosion properties. Based on the low-cost alloy composition design, the corrosion behavior of commercial Mg–3Al–1Zn (AZ31) alloy bearing minor Ca or Sn element was characterized by scanning Kelvin probe force microscopy, hydrogen evolution, electrochemical measurements, and corrosion morphology analysis. Results revealed that the potential difference of Al2Ca/α-Mg and Mg2Sn/α-Mg was (230 ± 19) mV and (80 ± 6) mV, respectively, much lower than that of Al8Mn5/α-Mg (430 ± 31) mV in AZ31 alloy, which illustrated that AZ31–0.2Sn alloy performed the best corrosion resistance, followed by AZ31–0.2Ca, while AZ31 alloy exhibited the worst corrosion resistance. Moreover, Sn dissolved into matrix obviously increased the potential of α-Mg and participated in the formation of dense SnO2 film at the interface of matrix, while Ca element was enriched in the corrosion product layer, resulting in the corrosion product layer of AZ31–0.2Ca/Sn alloys more compact, stable, and protective than AZ31 alloy. Therefore, AZ31 alloy bearing 0.2wt% Ca or Sn element exhibited excellent balanced properties, which is potential to be applied in commercial more comprehensively.
    • loading
    • [1]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [2]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [3]
      Z.Y. Ding, L.Y. Cui, R.C. Zeng, Y.B. Zhao, S.K. Guan, D.K. Xu, and C.G. Lin, Exfoliation corrosion of extruded Mg–Li–Ca alloy, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1550. doi: 10.1016/j.jmst.2018.05.014
      [4]
      R. Arrabal, B. Mingo, A. Pardo, E. Matykina, M. Mohedano, M.C. Merino, A. Rivas, and A. Maroto, Role of alloyed Nd in the microstructure and atmospheric corrosion of as-cast magnesium alloy AZ91, Corros. Sci., 97(2015), p. 38. doi: 10.1016/j.corsci.2015.04.004
      [5]
      G.M. Zhu, L.Y. Wang, J. Wang, J. Wang, J.S. Park, and X.Q. Zeng, Highly deformable Mg–Al–Ca alloy with Al2Ca precipitates, Acta Mater., 200(2020), p. 236. doi: 10.1016/j.actamat.2020.09.006
      [6]
      S. Sanyal, M. Paliwal, T.K. Bandyopadhyay, and S. Mandal, Evolution of microstructure, phases and mechanical properties in lean as-cast Mg–Al–Ca–Mn alloys under the influence of a wide range of Ca/Al ratio, Mater. Sci. Eng. A, 800(2021), art. No. 140322. doi: 10.1016/j.msea.2020.140322
      [7]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [8]
      H.A. Elamami, A. Incesu, K. Korgiopoulos, M. Pekguleryuz, and A. Gungor, Phase selection and mechanical properties of permanent-mold cast Mg–Al–Ca–Mn alloys and the role of Ca/Al ratio, J. Alloys Compd., 764(2018), p. 216. doi: 10.1016/j.jallcom.2018.05.309
      [9]
      B. Wang, X.H. Chen, F.S. Pan, and J.J. Mao, Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys, Prog. Nat. Sci. Mater. Int., 27(2017), No. 6, p. 695. doi: 10.1016/j.pnsc.2017.11.002
      [10]
      S.W. Bae, S.H. Kim, J.U. Lee, W.K. Jo, W.H. Hong, W. Kim, and S.H. Park, Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg–Al–Zn alloy through Sn addition, J. Alloys Compd., 766(2018), p. 748. doi: 10.1016/j.jallcom.2018.07.028
      [11]
      X. Chen, D.F. Zhang, J.Y. Xu, J.K. Feng, Y. Zhao, B. Jiang, and F.S. Pan, Improvement of mechanical properties of hot extruded and age treated Mg–Zn–Mn–Ca alloy through Sn addition, J. Alloys Compd., 850(2021), art. No. 156711. doi: 10.1016/j.jallcom.2020.156711
      [12]
      Z. Ahmad, A. Ul-Hamid, and B.J. Abdul-Aleem, The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution, Corros. Sci., 43(2001), No. 7, p. 1227. doi: 10.1016/S0010-938X(00)00147-5
      [13]
      L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, and E.H. Han, Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31, Corros. Sci., 118(2017), p. 84. doi: 10.1016/j.corsci.2017.01.025
      [14]
      Y.H. Liu, W.L. Cheng, Y. Zhang, X.F. Niu, H.X. Wang, and L.F. Wang, Microstructure, tensile properties, and corrosion resistance of extruded Mg–1Bi–1Zn alloy: The influence of minor Ca addition, J. Alloys Compd., 815(2020), art. No. 152414. doi: 10.1016/j.jallcom.2019.152414
      [15]
      C. He, B.H. Luo, Y.Y. Zheng, Y. Yin, Z.H. Bai, and Z.W. Ren, Effect of Sn on microstructure and corrosion behaviors of Al–Mg–Si alloys, Mater. Charact., 156(2019), art. No. 109836. doi: 10.1016/j.matchar.2019.109836
      [16]
      Y.M. Jin, C. Blawert, H. Yang, B. Wiese, F. Feyerabend, J. Bohlen, D. Mei, M. Deng, M.S. Campos, N. Scharnagl, K. Strecker, J.L. Bode, C. Vogt, and R. Willumeit-Römer, Microstructure-corrosion behaviour relationship of micro-alloyed Mg–0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu, Mater. Des., 195(2020), art. No. 108980. doi: 10.1016/j.matdes.2020.108980
      [17]
      W.J. Zhang, M.H. Li, Q. Chen, W.Y. Hu, W.M. Zhang, and W. Xin, Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications, Mater. Des., 39(2012), p. 379. doi: 10.1016/j.matdes.2012.03.006
      [18]
      S.M. Baek, S.Y. Lee, J.C. Kim, J. Kwon, H. Jung, S. Lee, K.S. Lee, and S.S. Park, Role of trace additions of Mn and Y in improving the corrosion resistance of Mg–3Al–1Zn alloy, Corros. Sci., 178(2021), art. No. 108998. doi: 10.1016/j.corsci.2020.108998
      [19]
      L. Yang, Y. Huang, F. Feyerabend, R. Willumeit, C. Mendis, K.U. Kainer, and N. Hort, Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications, Acta Biomater., 9(2013), No. 10, p. 8499. doi: 10.1016/j.actbio.2013.03.017
      [20]
      H.Y. Ha, J.Y. Kang, S.G. Kim, B. Kim, S.S. Park, C.D. Yim, and B.S. You, Influences of metallurgical factors on the corrosion behaviour of extruded binary Mg–Sn alloys, Corros. Sci., 82(2014), p. 369. doi: 10.1016/j.corsci.2014.01.035
      [21]
      S. Pawar, X. Zhou, T. Hashimoto, G.E. Thompson, G. Scamans, and Z. Fan, Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy, J. Alloys Compd., 628(2015), p. 195. doi: 10.1016/j.jallcom.2014.12.028
      [22]
      C. Zhang, L. Wu, G.S. Huang, Y. Huang, B. Jiang, A. Atrens, and F.S. Pan, Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31, J. Alloys Compd., 823(2020), art. No. 153844. doi: 10.1016/j.jallcom.2020.153844
      [23]
      Y. Liu, W.L. Cheng, X.J. Gu, Y.H. Liu, Z.Q. Cui, L.F. Wang, and H.X. Wang, Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg–0.5Bi–0.5Sn alloy by microalloying with Mn, J. Magnes. Alloys, 9(2021), No. 5, p. 1656. doi: 10.1016/j.jma.2020.07.010
      [24]
      Z. Hu, Z. Yin, Z. Yin, K. Wang, Q.D. Liu, P.F. Sun, H. Yan, H.G. Song, C. Luo, H.Y. Guan, and C. Luc, Corrosion behavior characterization of as extruded Mg–8Li–3Al alloy with minor alloying elements (Gd, Sn and Cu) by scanning Kelvin probe force microscopy, Corros. Sci., 176(2020), art. No. 108923. doi: 10.1016/j.corsci.2020.108923
      [25]
      Y.J. Wang, Y. Zhang, P.P. Wang, D. Zhang, B.W. Yu, Z. Xu, and H.T. Jiang, Effect of LPSO phases and aged-precipitations on corrosion behavior of as-forged Mg–6Gd–2Y–1Zn–0.3Zr alloy, J. Mater. Res. Technol., 9(2020), No. 4, p. 7087. doi: 10.1016/j.jmrt.2020.05.048
      [26]
      W.J. Liu, F.H. Cao, A.N. Chen, L.R. Chang, J.Q. Zhang, and C.N. Cao, Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour, Corros. Sci., 52(2010), No. 2, p. 627. doi: 10.1016/j.corsci.2009.10.031
      [27]
      Y.S. Jeong and W.J. Kim, Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion, Corros. Sci., 82(2014), p. 392. doi: 10.1016/j.corsci.2014.01.041
      [28]
      Y.J. Zhang, C.W. Yan, F.H. Wang, and W.F. Li, Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution, Corros. Sci., 47(2005), No. 11, p. 2816. doi: 10.1016/j.corsci.2005.01.010
      [29]
      S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.X. Bao, J.M. Yu, L. Li, Z. Zhao, J.Z. Cui, and Z.Q. Zhang, Improving the corrosion resistance of MgZn1.2GdxZr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions, Corros. Sci., 177(2020), art. No. 108962. doi: 10.1016/j.corsci.2020.108962
      [30]
      J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, and F.H. Wang, Role of the LPSO structure in the improvement of corrosion resistance of Mg–Gd–Zn–Zr alloys, J. Alloys Compd., 782(2019), p. 648. doi: 10.1016/j.jallcom.2018.12.233
      [31]
      R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank's solution: The influence of microstructural features, Corros. Sci., 79(2014), p. 69. doi: 10.1016/j.corsci.2013.10.028
      [32]
      D. Li, Electrochemical Principle, 3rd ed., Beijing University of Aeronautics and Astronautics Press, Beijing, 2008.
      [33]
      X.B. Liu, D.Y. Shan, Y.W. Song, R.S. Chen, and E.H. Han, Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg–7Sn magnesium alloy, Electrochim. Acta, 56(2011), No. 5, p. 2582. doi: 10.1016/j.electacta.2010.12.030
      [34]
      W.Y. Jiang, J.F. Wang, W.K. Zhao, Q.S. Liu, D.M. Jiang, and S.F. Guo, Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys, J. Magnes. Alloys, 7(2019), No. 1, p. 15. doi: 10.1016/j.jma.2019.02.002
      [35]
      P. Metalnikov, G. Ben-Hamu, D. Eliezer, and K.S. Shin, Role of Sn in microstructure and corrosion behavior of new wrought Mg–5Al alloy, J. Alloys Compd., 777(2019), p. 835. doi: 10.1016/j.jallcom.2018.11.003
      [36]
      H.Y. Ha, J.Y. Kang, J. Yang, C.D. Yim, and B.S. You, Role of Sn in corrosion and passive behavior of extruded Mg–5 wt%Sn alloy, Corros. Sci., 102(2016), p. 355. doi: 10.1016/j.corsci.2015.10.028
      [37]
      J.Y. Zhang, B. Jiang, Q.S. Yang, D. Huang, A.T. Tang, F.S. Pan, and Q.Y. Han, Role of second phases on the corrosion resistance of Mg–Nd–Zr alloys, J. Alloys Compd., 849(2020), art. No. 156619. doi: 10.1016/j.jallcom.2020.156619
      [38]
      X. Peng, S.H. Xu, D.H. Ding, G.L. Liao, G.H. Wu, W.C. Liu, and W.J. Ding, Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg–5Li–3Al–2Zn alloy with different Sn and Y addition, J. Mater. Sci. Technol., 72(2021), p. 16. doi: 10.1016/j.jmst.2020.07.029
      [39]
      S. Moon and Y. Nam, Anodic oxidation of Mg–Sn alloys in alkaline solutions, Corros. Sci., 65(2012), p. 494. doi: 10.1016/j.corsci.2012.08.050

    Catalog


    • /

      返回文章
      返回