留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 10
Oct.  2021

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  998
  • HTML全文浏览量:  351
  • PDF下载量:  38
  • 被引次数: 0
Jun Yang, Yuan-hua Lin, Bing-shu Guo, Ming-shan Wang, Jun-chen Chen, Zhi-yuan Ma, Yun Huang,  and Xing Li, Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1621-1628. https://doi.org/10.1007/s12613-021-2270-x
Cite this article as:
Jun Yang, Yuan-hua Lin, Bing-shu Guo, Ming-shan Wang, Jun-chen Chen, Zhi-yuan Ma, Yun Huang,  and Xing Li, Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1621-1628. https://doi.org/10.1007/s12613-021-2270-x
引用本文 PDF XML SpringerLink
研究论文

SrF2颗粒涂覆增强Si/C负极电化学性能

  • Research Article

    Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle

    + Author Affiliations
    • The silicon-based material exhibits a high theoretical specific capacity and is one of the best anode for the next generation of advanced lithium-ion batteries (LIBs). However, it is difficult for the silicon-based anode to form a stable solid-state interphase (SEI) during Li alloy/de-alloy process due to the large volume change (up to 300%) between silicon and Li4.4Si, which seriously limits the cycle life of the LIBs. Herein, we use strontium fluoride (SrF2) particle to coat the silicon−carbon (Si/C) electrode (SrF2@Si/C) to help forming a stable and high mechanical strength SEI by spontaneously embedding the SrF2 particle into SEI. Meanwhile the formed SEI can inhibit the volume expansion of the silicon−carbon anode during the cycle. The electrochemical test results show that the cycle performance and the ionic conductivity of the SrF2@Si/C anode has been significantly improved. The X-ray photoelectron spectroscopy (XPS) analysis reveals that there are fewer electrolyte decomposition products formed on the surface of the SrF2@Si/C anode. This study provides a facile approach to overcome the problems of Si/C electrode during the electrochemical cycling, which will be beneficial to the industrial application of silicon-based anode materials.

    • loading
    • [1]
      J.B. Goodenough and K.S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135(2013), No. 4, p. 1167. doi: 10.1021/ja3091438
      [2]
      L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, pp. 538-552. doi: 10.1007/s12613-020-2218-6
      [3]
      M. Winter, B. Barnett, and K. Xu, Before Li ion batteries, Chem. Rev., 118(2018), No. 23, p. 11433. doi: 10.1021/acs.chemrev.8b00422
      [4]
      Y. Jin, B. Zhu, Z.D. Lu, N. Liu, and J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery, Adv. Energy Mater., 7(2017), No. 23, p. 1700715. doi: 10.1002/aenm.201700715
      [5]
      A. Iqbal, L. Chen, Y. Chen, Y. X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO−C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
      [6]
      H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7(2012), No. 5, p. 414. doi: 10.1016/j.nantod.2012.08.004
      [7]
      L.F. Cui, R. Ruffo, C.K. Chan, H.L. Peng, and Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 9(2009), No. 1, p. 491. doi: 10.1021/nl8036323
      [8]
      W. Wang, Y.W. Wang, L. Gu, R. Lu, H.L. Qian, X.S. Peng, and J. Sha, SiC@Si core-shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries, J. Power Sources, 293(2015), p. 492. doi: 10.1016/j.jpowsour.2015.05.103
      [9]
      Y.W. Hu, X.S. Liu, X.P. Zhang, N. Wan, D. Pan, X.J. Li, Y. Bai, and W.F. Zhang, Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries, Electrochim. Acta, 190(2016), p. 33. doi: 10.1016/j.electacta.2015.12.211
      [10]
      U. Kasavajjula, C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163(2007), No. 2, p. 1003. doi: 10.1016/j.jpowsour.2006.09.084
      [11]
      A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9(2010), No. 4, p. 353. doi: 10.1038/nmat2725
      [12]
      X. Li, Y.S. Bai, M.S. Wang, G.L. Wang, Y. Ma, L. Li, B.S. Xiao, and J.M. Zheng, Self-assembly encapsulation of Si in N-doped reduced graphene oxide for use as a lithium ion battery anode with significantly enhanced electrochemical performance, Sustainable Energy Fuels, 3(2019), No. 6, p. 1427. doi: 10.1039/C9SE00027E
      [13]
      M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Silicon nanotube battery anodes, Nano Lett., 9(2009), No. 11, p. 3844. doi: 10.1021/nl902058c
      [14]
      Y. Zhang, K. Hu, Y.L. Zhou, Y.B. Xia, N.F. Yu, G.L. Wu, Y.S. Zhu, Y.P. Wu, and H.B. Huang, A facile, one-step synthesis of silicon/silicon carbide/carbon nanotube nanocomposite as a cycling-stable anode for lithium ion batteries, Nanomaterials, 9(2019), No. 11, p. 1624. doi: 10.3390/nano9111624
      [15]
      C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3(2008), No. 1, p. 31. doi: 10.1038/nnano.2007.411
      [16]
      K.Q. Peng, J.S. Jie, W.J. Zhang, and S.T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl. Phys. Lett., 93(2008), No. 3, p. 033105. doi: 10.1063/1.2929373
      [17]
      H.W. Mi, F. Li, S.X. Xu, Z.A. Li, X.Y. Chai, C.X. He, Y.L. Li, and J.H. Liu, A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries, Nanoscale Res. Lett., 11(2016), No. 1, p. 204. doi: 10.1186/s11671-016-1414-9
      [18]
      B. Wang, X.L. Li, B. Luo, Y.Y. Jia, and L.J. Zhi, One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes, Nanoscale, 5(2013), No. 4, p. 1470. doi: 10.1039/c3nr33288h
      [19]
      M.S. Wang, W.L. Song, and L.Z. Fan, Three-dimensional interconnected network of graphene-wrapped silicon/carbon nanofiber hybrids for binder-free anodes in lithium-ion batteries, ChemElectroChem, 2(2015), No. 11, p. 1699. doi: 10.1002/celc.201500187
      [20]
      H.P. Jia, L.F. Zou, P.Y. Gao, X. Cao, W.G. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X.D. Ren, Q.Y. Li, R. Yi, X. Zhang, C.M. Wang, Z.J. Xu, X.L. Li, J.G. Zhang, and W. Xu, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater., 9(2019), No. 31, p. 1900784. doi: 10.1002/aenm.201900784
      [21]
      S. Chattopadhyay, A.L. Lipson, H.J. Karmel, J.D. Emery, T.T. Fister, P.A. Fenter, M.C. Hersam, and M.J. Bedzyk, In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode, Chem. Mater., 24(2012), No. 15, p. 3038. doi: 10.1021/cm301584r
      [22]
      Y.Y. Lu, Z.Y. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13(2014), No. 10, p. 961. doi: 10.1038/nmat4041
      [23]
      H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J. G. Zhang, and W. Xu, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater.., 9(2019), art. No.1900784.
      [24]
      S.F. Liu, X. Ji, J. Yue, S. Hou, P.F. Wang, C.Y. Cui, J. Chen, B.W. Shao, J.R. Li, F.D. Han, J.P. Tu, and C.S. Wang, High interfacial-energy interphase promoting safe lithium metal batteries, J. Am. Chem. Soc., 142(2020), No. 5, p. 2438. doi: 10.1021/jacs.9b11750
      [25]
      X. Li, Y. Liu, Y. Pan, M.S. Wang, J.C. Chen, H. Xu, Y. Huang, W.M. Lau, A.X. Shan, J.M. Zheng, and D. Mitlin, A functional SrF2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode, J. Mater. Chem. A, 7(2019), No. 37, p. 21349. doi: 10.1039/C9TA06908A
      [26]
      C.C. Nguyen, T. Yoon, D.M. Seo, P. Guduru, and B.L. Lucht, Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation, ACS Appl. Mater. Interfaces, 8(2016), No. 19, p. 12211. doi: 10.1021/acsami.6b03357
      [27]
      X. Li, K.J. Zhang, D. Mitlin, E. Paek, M.S. Wang, F. Jiang, Y. Huang, Z.Z. Yang, Y. Gong, L. Gu, W.G. Zhao, Y.G. Du, and J.M. Zheng, Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) cathodes: Atomic scale insight on the mechanisms of cycling decay and of the improvement due to cobalt phosphate surface modification, Small, 14(2018), No. 40, p. 1802570. doi: 10.1002/smll.201802570
      [28]
      X. Li, K.J. Zhang, D. Mitlin, Z.Z. Yang, M.S. Wang, Y. Tang, F. Jiang, Y.G. Du, and J.M. Zheng, Fundamental insight into Zr modification of Li- and Mn-rich cathodes: Combined transmission electron microscopy and electrochemical impedance spectroscopy study, Chem. Mater., 30(2018), No. 8, p. 2566. doi: 10.1021/acs.chemmater.7b04861
      [29]
      X. Li, Y.S. Bai, M.S. Wang, G.L. Wang, Y. Ma, Y. Huang, and J.M. Zheng, Dual carbonaceous materials synergetic protection silicon as a high-performance free-standing anode for lithium-ion battery, Nanomater., 9(2019), No. 4, p. 650. doi: 10.3390/nano9040650

    Catalog


    • /

      返回文章
      返回