留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(13)

数据统计

分享

计量
  • 文章访问数:  1661
  • HTML全文浏览量:  585
  • PDF下载量:  129
  • 被引次数: 0
Chenwei Li, Danlong Li, Xin Li, Ming Xu,  and Haijun Zhang, Surface nanobubbles on the hydrophobic surface and their implication to flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1493-1501. https://doi.org/10.1007/s12613-021-2279-1
Cite this article as:
Chenwei Li, Danlong Li, Xin Li, Ming Xu,  and Haijun Zhang, Surface nanobubbles on the hydrophobic surface and their implication to flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1493-1501. https://doi.org/10.1007/s12613-021-2279-1
引用本文 PDF XML SpringerLink
研究论文

疏水界面纳米气泡特性及其对矿物浮选行为影响研究

  • 通讯作者:

    张海军    E-mail: zhjcumt@163.com

文章亮点

  • (1) 结合原子力显微镜接触模式和轻敲模式对纳米颗粒存在状态进行了识别。
  • (2) 发现了常温水中纳米气泡在固液界面的成核现象。
  • (3) 研究了纳米气泡对外界物理化学环境变化的应答。
  • 纳米气泡在细粒浮选中具有巨大的应用潜力。本文利用原子力显微镜研究了纳米颗粒的身份识别、测量参数对纳米气泡形貌的影响以及纳米气泡对pH、盐浓度和表面活性剂浓度变化等外部刺激的应答。实验发现纳米气泡可在室温环境中的固液界面成核,接触模式下针尖驱动的纳米结构间的兼并现象为纳米结构的气相本质提供了实验的证据。盐及MIBC浓度的变化对纳米气泡的横跨尺寸和高度无显著的影响,LiCl的添加对纳米气泡的横跨尺寸分布影响不大,但是显著影响了纳米气泡的高度分布。本文研究结果可为基于纳米气泡强化的矿物浮选过程设计提供参考。
  • Research Article

    Surface nanobubbles on the hydrophobic surface and their implication to flotation

    + Author Affiliations
    • Nanobubbles play a potential role in the application of the flotation of fine particles. In this work, the identification of nanoentities was performed with a contact mode atomic force microscope (AFM). Moreover, the influences of setpoint ratio and amplitude of the cantilever and the responses of the formed surface nanobubbles to the fluctuation of pH, salt concentration, and surfactant concentration in the slurry were respectively studied. Nanobubbles were reported on the highly oriented pyrolytic graphite (HOPG) surface as the HOPG was immersed in deionized water under ambient temperature. The coalescence of nanobubbles occurred under contact mode, which provides strong evidence of the gaseous nature of these nanostructures on HOPG. The measuring height of the surface nanobubbles decreased with the setpoint ratio. The changes in the pH and concentration of methyl isobutyl carbinol (MIBC) show a negligible influence on the lateral size and height of the preexisting surface nanobubbles. The addition of LiCl results in a negligible change of the lateral size; however, an obvious change is noticed in the height of surface nanobubbles. The results are expected to provide a valuable reference in understanding the properties of surface nanobubbles and in the design of nanobubble-assisted flotation processes.
    • loading
    • [1]
      R.H. Yoon and G.H. Luttrell, The effect of bubble size on fine particle flotation, Miner. Process. Extr. Metall. Rev., 5(1989), No. 1-4, p. 101. doi: 10.1080/08827508908952646
      [2]
      A. Ozkan, S. Aydogan, and M. Yekeler, Critical solution surface tension for oil agglomeration, Int. J. Miner. Process., 76(2005), No. 1-2, p. 83. doi: 10.1016/j.minpro.2004.12.003
      [3]
      S. Duzyol, A. Ozkan, and M. Yekeler, Critical oil–liquid interfacial tension for some oil-assisted fine particle processing methods, Colloids Surf. A, 398(2012), p. 32. doi: 10.1016/j.colsurfa.2012.02.005
      [4]
      S. Duzyol and A. Ozkan, Effect of contact angle, surface tension and zeta potential on oil agglomeration of celestite, Miner. Eng., 65(2014), p. 74. doi: 10.1016/j.mineng.2014.05.015
      [5]
      P.K. Weisseborn, L.J. Warren, and J.G. Dunn, Selective flocculation of ultrafine iron ore. 1. Mechanism of adsorption of starch onto hematite, Colloids Surf. A, 99(1995), No. 1, p. 11. doi: 10.1016/0927-7757(95)03111-P
      [6]
      N.R. Mandre and D. Panigrahi, Studies on selective flocculation of complex sulphides using cellulose xanthate, Int. J. Miner. Process., 50(1997), No. 3, p. 177. doi: 10.1016/S0301-7516(97)00013-6
      [7]
      I. Dogu and A.I. Arol, Separation of dark-colored minerals from feldspar by selective flocculation using starch, Powder Technol., 139(2004), No. 3, p. 258. doi: 10.1016/j.powtec.2003.11.009
      [8]
      S.X. Song and A.L. Valdivieso, Hydrophobic flocculation flotation for beneficiating fine coal and minerals, Sep. Sci. Technol., 33(1998), No. 8, p. 1195. doi: 10.1080/01496399808545249
      [9]
      S. Song, A. Lopez-Valdivieso, J.L. Reyes-Bahena, and C. Lara-Valenzuela, Floc flotation of galena and sphalerite fines, Miner. Eng., 14(2001), No. 1, p. 87. doi: 10.1016/S0892-6875(00)00162-X
      [10]
      S. Song, Y. Zhang, K. Wu, A. Lopez-Valdivieso, and S. Lu, Flotation of coal fines as hydrophobic flocs for ash rejection, J. Dispersion Sci. Technol., 25(2004), No. 1, p. 75. doi: 10.1081/DIS-120027671
      [11]
      J.L. Parker, P.M. Claesson, and P. Attard, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces, J. Phys. Chem., 98(1994), No. 34, p. 8468. doi: 10.1021/j100085a029
      [12]
      S.T. Lou, Z.Q. Ouyang, Y. Zhang, X.J. Li, J. Hu, M.Q. Li, and F.J. Yang, Nanobubbles on solid surface imaged by atomic force microscopy, J. Vac. Sci. Technol. B, 18(2000), No. 5, art. No. 2573. doi: 10.1116/1.1289925
      [13]
      N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir, 16(2000), No. 16, p. 6377. doi: 10.1021/la000219r
      [14]
      J.W.G. Tyrrell and P. Attard, Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force–separation data, Langmuir, 18(2002), No. 1, p. 160. doi: 10.1021/la0111957
      [15]
      N. Ishida and K. Higashitani, Interaction forces between chemically modified hydrophobic surfaces evaluated by AFM—The role of nanoscopic bubbles in the interactions, Miner. Eng., 19(2006), No. 6-8, p. 719. doi: 10.1016/j.mineng.2005.09.023
      [16]
      H. Peng, M.A. Hampton, and A.V. Nguyen, Nanobubbles do not sit alone at the solid–liquid interface, Langmuir, 29(2013), No. 20, p. 6123. doi: 10.1021/la305138v
      [17]
      X.H. Zhang, A. Kumar, and P.J. Scales, Effects of solvency and interfacial nanobubbles on surface forces and bubble attachment at solid surfaces, Langmuir, 27(2011), No. 6, p. 2484. doi: 10.1021/la1042074
      [18]
      P. Knüpfer, L. Ditscherlein, and U.A. Peuker, Nanobubble enhanced agglomeration of hydrophobic powders, Colloids Surf. A, 530(2017), p. 117. doi: 10.1016/j.colsurfa.2017.07.056
      [19]
      Z.A. Zhou, Z.H. Xu, J.A. Finch, J.H. Masliyah, and R.S. Chow, On the role of cavitation in particle collection in flotation – A critical review. II, Miner. Eng., 22(2009), No. 5, p. 419. doi: 10.1016/j.mineng.2008.12.010
      [20]
      H.P. Li, A. Afacan, Q.X. Liu, and Z.H. Xu, Study interactions between fine particles and micron size bubbles generated by hydrodynamic cavitation, Miner. Eng., 84(2015), p. 106. doi: 10.1016/j.mineng.2015.09.023
      [21]
      S. Calgaroto, A. Azevedo, and J. Rubio, Flotation of quartz particles assisted by nanobubbles, Int. J. Miner. Process., 137(2015), p. 64. doi: 10.1016/j.minpro.2015.02.010
      [22]
      D.P. Tao and A. Sobhy, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technol., 346(2019), p. 385. doi: 10.1016/j.powtec.2019.02.024
      [23]
      W.G. Zhou, C.N. Wu, H.Z. Lv, B.L. Zhao, K. Liu, and L.M. Ou, Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation, Appl. Surf. Sci., 508(2020), art. No. 145282. doi: 10.1016/j.apsusc.2020.145282
      [24]
      K.W. Stöckelhuber, B. Radoev, A. Wenger, and H.J. Schulze, Rupture of wetting films caused by nanobubbles, Langmuir, 20(2004), No. 1, p. 164. doi: 10.1021/la0354887
      [25]
      V.S. Ajaev, Effect of nanoscale bubbles on viscous flow and rupture in thin liquid films, Phys. Fluids, 18(2006), No. 6, art. No. 068101. doi: 10.1063/1.2210004
      [26]
      B.V. Hassas, J.Q. Jin, L.X. Dang, X.M. Wang, and J.D. Miller, Attachment, coalescence, and spreading of carbon dioxide nanobubbles at pyrite surfaces, Langmuir, 34(2018), No. 47, p. 14317. doi: 10.1021/acs.langmuir.8b02929
      [27]
      H.J. Butt, B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep., 59(2005), No. 1-6, p. 1. doi: 10.1016/j.surfrep.2005.08.003
      [28]
      C.W. Li, X. Li, M. Xu, and H.J. Zhang, Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not? Ultrason. Sonochem., 69(2020), art. No. 105243. doi: 10.1016/j.ultsonch.2020.105243
      [29]
      D. Lohse and X.H. Zhang, Surface nanobubbles and nanodroplets, Rev. Mod. Phys., 87(2015), No. 3, p. 981. doi: 10.1103/RevModPhys.87.981
      [30]
      D.R. Evans, V.S.J. Craig, and T.J. Senden, The hydrophobic force: Nanobubbles or polymeric contaminant? Physica A, 339(2004), No. 1-2, p. 101. doi: 10.1016/j.physa.2004.03.043
      [31]
      B.M. Borkent, S. de Beer, F. Mugele, and D. Lohse, On the shape of surface nanobubbles, Langmuir, 26(2010), No. 1, p. 260. doi: 10.1021/la902121x
      [32]
      R.P. Berkelaar, E. Dietrich, G.A.M. Kip, E.S. Kooij, H.J.W. Zandvliet, and D. Lohse, Exposing nanobubble-like objects to a degassed environment, Soft Matter, 10(2014), No. 27, p. 4947. doi: 10.1039/c4sm00316k
      [33]
      H.J. An, G.M. Liu, and V.S.J. Craig, Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces, Adv. Colloid Interface Sci., 222(2015), p. 9. doi: 10.1016/j.cis.2014.07.008
      [34]
      L. Ditscherlein, J. Fritzsche, and U.A. Peuker, Study of nanobubbles on hydrophilic and hydrophobic alumina surfaces, Colloids Surf. A, 497(2016), p. 242. doi: 10.1016/j.colsurfa.2016.03.011
      [35]
      J.W. Yang, J.M. Duan, D. Fornasiero, and J. Ralston, Very small bubble formation at the solid–water interface, J. Phys. Chem. B, 107(2003), No. 25, p. 6139. doi: 10.1021/jp0224113
      [36]
      X.H. Zhang, A. Quinn, and W.A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir, 24(2008), No. 9, p. 4756. doi: 10.1021/la703475q
      [37]
      X.H. Zhang, M.H. Uddin, H.J. Yang, G. Toikka, W. Ducker, and N. Maeda, Effects of surfactants on the formation and the stability of interfacial nanobubbles, Langmuir, 28(2012), No. 28, p. 10471. doi: 10.1021/la301851g
      [38]
      B. Anczykowski, D. Krüger, K.L. Babcock, and H. Fuchs, Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy, 66(1996), No. 3-4, p. 251. doi: 10.1016/S0304-3991(97)00002-8
      [39]
      C.M. Su, L. Huang, and K. Kjoller, Direct measurement of tapping force with a cantilever deflection force sensor, Ultramicroscopy, 100(2004), No. 3-4, p. 233. doi: 10.1016/j.ultramic.2003.11.007
      [40]
      S. Yang, E.S. Kooij, B. Poelsema, D. Lohse, and H.J.W. Zandvliet, Correlation between geometry and nanobubble distribution on HOPG surface, Europhys. Lett., 81(2008), No. 6, art. No. 64006. doi: 10.1209/0295-5075/81/64006
      [41]
      B.Y. Zhao, Y. Song, S. Wang, B. Dai, L.J. Zhang, Y.M. Dong, J.H. Lü, and J. Hu, Mechanical mapping of nanobubbles by PeakForce atomic force microscopy, Soft Matter, 9(2013), No. 37, p. 8837. doi: 10.1039/c3sm50942g
      [42]
      N. Mishchuk, J. Ralston, and D. Fornasiero, Influence of very small bubbles on particle/bubble heterocoagulation, J. Colloid Interface Sci., 301(2006), No. 1, p. 168. doi: 10.1016/j.jcis.2006.04.071
      [43]
      N.A. Mishchuk, The model of hydrophobic attraction in the framework of classical DLVO forces, Adv. Colloid Interface Sci., 168(2011), No. 1-2, p. 149. doi: 10.1016/j.cis.2011.06.003

    Catalog


    • /

      返回文章
      返回