留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  3870
  • HTML全文浏览量:  1279
  • PDF下载量:  94
  • 被引次数: 0
Jing Han, Cong Wang, Yuanming Song, Zhiyuan Liu, Jiapeng Sun, and Jiyun Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1551-1558. https://doi.org/10.1007/s12613-021-2294-2
Cite this article as:
Jing Han, Cong Wang, Yuanming Song, Zhiyuan Liu, Jiapeng Sun, and Jiyun Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1551-1558. https://doi.org/10.1007/s12613-021-2294-2
引用本文 PDF XML SpringerLink
研究论文

超声表面滚压协同提高铸态AZ91镁合金的力学和腐蚀性能

  • 通讯作者:

    韩静    E-mail: hanjing@cumt.edu.cn

    赵继云    E-mail: jyzhao@cumt.edu.cn

文章亮点

  • (1) 采用超声表面滚压在铸态AZ91镁合金表面制备出梯度纳米结构和光滑表面。
  • (2) 超声表面滚压提高了AZ91镁合金的强度和表面硬度而未显著降低塑性。
  • (3) 超声表面滚压提高了AZ91镁合金在3.5wt% NaCl溶液中的耐蚀性。
  • 镁合金具有低密度、高比强度等优势,是轻量化应用的优异结构材料。然而,相对于已经大规模工业应用的钢铁、钛合金和铝合金,镁合金铸件易腐蚀、绝对强度低、室温塑性差,成为限制其工业化应用的瓶颈。本文旨在采用超声表面滚压对铸态AZ91镁合金进行表面纳米化处理,以提高其力学性能和耐腐蚀性能。结果表明超声表面滚压在铸态AZ91镁合金表面制备出梯度纳米结构和光滑表面(Ra 0.036 μm)。超声表面滚压使得AZ91铸态镁合金样品的屈服强度和抗拉强度分别提高了55%和50%,表面硬度提高了24%,而断裂延伸率没有显著下降。超声表面滚压的AZ91镁合金样品在3.5wt% NaCl水溶液中具有良好的耐腐蚀性。与未处理样品相比较,浸泡1 h后超声表面滚压处理样品的腐蚀电流密度降低63%,浸泡24 h后腐蚀电流密度降低25%。强度和硬度的提高主要来源于梯度纳米结构,而腐蚀性能的提高主要源于表面纳米结构、光滑表面和残余压应力。
  • Research Article

    Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling

    + Author Affiliations
    • Mg alloy casting parts commonly suffer from drawbacks of low surface properties, high susceptibility to corrosion, unsatisfactory absolute strength, and poor ductility, which seriously limit their wide application. Here, a surface nanocrystallization technique, i.e., ultrasonic surface rolling (USR), was applied on an as-cast AZ91 Mg alloy sheet to improve its corrosion resistance and mechanical properties. The USR produces double smooth surfaces with Ra 0.036 μm and gradient nanostructured surface layers on the sheet. Due to this special microstructure modification, the USR sheet exhibits 55% and 50% improvements in yield strength and ultimate tensile strength without visibly sacrificed ductility comparable to its untreated counterpart, as well as a 24% improvement in surface hardness. The USR sheet also shows good corrosion resistance in 3.5wt% NaCl aqueous solution. The corrosion current density of the USR sheet reduces by 63% after immersion for 1 h, and 25% after immersion for 24 h compared to that of the untreated counterpart. The enhanced strength and hardness are mainly related to the gradient nanostructure. The improved corrosion resistance is mainly ascribed to the decreased surface roughness, nanostructured surface, and residual compressive stress. The present results state that USR is an effective and attractive method to improve the multiple properties of Mg alloy casting parts, and thus can be used as an additional and last working procedure to achieve high-performance Mg alloy casting parts.
    • loading
    • [1]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [2]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [3]
      Y.C. Wang, B.Y. Liu, X.A. Zhao, X.H. Zhang, Y.C. Miao, N. Yang, B. Yang, L.Q. Zhang, W.J. Kuang, J. Li, E. Ma, and Z.W. Shan, Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2, Nat. Commun., 9(2018), art. No. 4058. doi: 10.1038/s41467-018-06433-5
      [4]
      G. Wu, K.C. Chan, L.L. Zhu, L.G. Sun, and J. Lu, Dual-phase nanostructuring as a route to high-strength magnesium alloys, Nature, 545(2017), No. 7652, p. 80. doi: 10.1038/nature21691
      [5]
      G.S. Wu, J.M. Ibrahim, and P.K. Chu, Surface design of biodegradable magnesium alloys—A review, Surf. Coat. Technol., 233(2013), p. 2. doi: 10.1016/j.surfcoat.2012.10.009
      [6]
      J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent developments in high-strength Mg–RE-based alloys: Focusing on Mg–Gd and Mg–Y systems, J. Magnes. Alloys, 6(2018), No. 3, p. 277. doi: 10.1016/j.jma.2018.08.001
      [7]
      J.P. Sun, Z.Q. Yang, J. Han, H. Liu, D. Song, J.H. Jiang, and A.B. Ma, High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging, Mater. Sci. Eng. A, 734(2018), p. 485. doi: 10.1016/j.msea.2018.07.075
      [8]
      J.P. Sun, B.Q. Xu, Z.Q. Yang, H. Zhou, J. Han, Y.N. Wu, D. Song, Y.C. Yuan, X.R. Zhuo, H. Liu, and A.B. Ma, Achieving excellent ductility in high-strength Mg–10.6Gd–2Ag alloy via equal channel angular pressing, J. Alloys Compd., 817(2020), art. No. 152688. doi: 10.1016/j.jallcom.2019.152688
      [9]
      X. Zhao, F.F. Yan, Z.M. Zhang, P.C. Gao, and S.C. Li, Influence of heat treatment on precipitation behavior and mechanical properties of extruded AZ80 magnesium alloy, Acta Metall. Sin., 34(2021), No. 1, p. 54. doi: 10.1007/s40195-020-01094-0
      [10]
      J.P. Sun, B.Q. Xu, Z.Q. Yang, J. Han, N.N. Liang, Y. Han, J.H. Jiang, A.B. Ma, and G.S. Wu, Mediating the strength, ductility and corrosion resistance of high aluminum containing magnesium alloy by engineering hierarchical precipitates, J. Alloys Compd., 857(2021), art. No. 158277. doi: 10.1016/j.jallcom.2020.158277
      [11]
      K. Lu, Gradient nanostructured materials, Acta Metall. Sin., 51(2015), No. 1, p. 1.
      [12]
      X.H. Chen, J. Lu, L. Lu, and K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Mater., 52(2005), No. 10, p. 1039. doi: 10.1016/j.scriptamat.2005.01.023
      [13]
      S. Bahl, S. Suwas, T. Ungàr, and K. Chatterjee, Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel, Acta Mater., 122(2017), p. 138. doi: 10.1016/j.actamat.2016.09.041
      [14]
      S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud, and J.L. Grosseau Poussard, Influence of surface mechanical attrition treatment on the oxidation behaviour of 316L stainless steel, Corros. Sci., 136(2018), p. 188. doi: 10.1016/j.corsci.2018.03.007
      [15]
      P.F. Wang and Z. Han, Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1835. doi: 10.1016/j.jmst.2018.01.013
      [16]
      C. Wang, J. Han, J.Y. Zhao, Y.M. Song, J.X. Man, H. Zhu, J.P. Sun, and L. Fang, Enhanced wear resistance of 316 L stainless steel with a nanostructured surface layer prepared by ultrasonic surface rolling, Coatings, 9(2019), No. 4, art. No. 276. doi: 10.3390/coatings9040276
      [17]
      T. Wang, D.P. Wang, G. Liu, B.M. Gong, and N.X. Song, Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing, Appl. Surf. Sci., 255(2008), No. 5, p. 1824. doi: 10.1016/j.apsusc.2008.06.034
      [18]
      L. Li, M. Kim, S. Lee, M. Bae, and D. Lee, Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel, Surf. Coat. Technol., 307(2016), p. 517. doi: 10.1016/j.surfcoat.2016.09.023
      [19]
      H.B. Wang, G.L. Song, and G.Y. Tang, Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process, Surf. Coat. Technol., 282(2015), p. 149. doi: 10.1016/j.surfcoat.2015.10.026
      [20]
      G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy, Appl. Surf. Sci., 389(2016), p. 324. doi: 10.1016/j.apsusc.2016.07.120
      [21]
      I. Ghamarian, P. Samimi, A. Telang, V.K. Vasudevan, and P.C. Collins, Characterization of the near-surface nanocrystalline microstructure of ultrasonically treated Ti–6Al–4V using ASTAR™/precession electron diffraction technique, Mater. Sci. Eng. A, 688(2017), p. 524. doi: 10.1016/j.msea.2017.02.029
      [22]
      Y. Liang, H.F. Qin, N. Mehra, J.H. Zhu, Z.N. Yang, G.L. Doll, C. Ye, and Y.L. Dong, Controllable hierarchical micro/nano patterns on biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification, Mater. Des., 137(2018), p. 325. doi: 10.1016/j.matdes.2017.10.041
      [23]
      Y.D. Ye, X.P. Li, Z.Y. Sun, H.B. Wang, and G.Y. Tang, Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process, Acta Metall. Sin., 31(2018), No. 12, p. 1272. doi: 10.1007/s40195-018-0738-0
      [24]
      A. Amanov, O.V. Penkov, Y.S. Pyun, and D.E. Kim, Effects of ultrasonic nanocrystalline surface modification on the tribological properties of AZ91D magnesium alloy, Tribol. Int., 54(2012), p. 106. doi: 10.1016/j.triboint.2012.04.024
      [25]
      H. Ye, X. Sun, Y. Liu, X.X. Rao, and Q. Gu, Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy, Surf. Coat. Technol., 372(2019), p. 288. doi: 10.1016/j.surfcoat.2019.05.035
      [26]
      Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 51(2009), No. 5, p. 1087. doi: 10.1016/j.corsci.2009.03.011
      [27]
      G. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 7(2005), No. 7, p. 563. doi: 10.1002/adem.200500013
      [28]
      M. Grimm, A. Lohmüller, R.F. Singer, and S. Virtanen, Influence of the microstructure on the corrosion behaviour of cast Mg–Al alloys, Corros. Sci., 155(2019), p. 195. doi: 10.1016/j.corsci.2019.04.024
      [29]
      Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, and Q.Y. Shi, Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing, Corros. Sci., 138(2018), p. 284. doi: 10.1016/j.corsci.2018.04.028
      [30]
      J.R. Li, Q.T. Jiang, H.Y. Sun, and Y.T. Li, Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution, Corros. Sci., 111(2016), p. 288. doi: 10.1016/j.corsci.2016.05.019
      [31]
      Y. Cubides, A.I. Karayan, D.X. Zhao, L. Nash, K. Xie, and H. Castaneda, New insights on the corrosion mechanism of a peak-aged Mg–9Al–1Zn alloy in a chloride environment, J. Alloys Compd., 840(2020), art. No. 155786. doi: 10.1016/j.jallcom.2020.155786
      [32]
      J.H. Moon, S.M. Baek, S.G. Lee, Y. Seong, A. Amanov, S. Lee, and H.S. Kim, Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification, Mater. Res. Lett., 7(2019), No. 3, p. 97. doi: 10.1080/21663831.2018.1560370
      [33]
      R.X. Zheng, J.P. Du, S. Gao, H. Somekawa, S. Ogata, and N. Tsuji, Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer, Acta Mater., 198(2020), p. 35. doi: 10.1016/j.actamat.2020.07.055
      [34]
      W. Li and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Mater., 54(2006), No. 2, p. 445. doi: 10.1016/j.actamat.2005.09.017
      [35]
      D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 15, p. 6176. doi: 10.1016/j.actamat.2011.06.033
      [36]
      H. Torbati-Sarraf, S.A. Torbati-Sarraf, A. Poursaee, and T.G. Langdon, Electrochemical behavior of a magnesium ZK60 alloy processed by high-pressure torsion, Corros. Sci., 154(2019), p. 90. doi: 10.1016/j.corsci.2019.04.006
      [37]
      K.Y. Luo, C.Y. Wang, C.Y. Cui, J.Z. Lu, and Y.F. Lu, Effects of coverage layer on the electrochemical corrosion behaviour of Mg–Al–Mn alloy subjected to massive laser shock peening treatment, J. Alloys Compd., 782(2019), p. 1058. doi: 10.1016/j.jallcom.2018.12.224

    Catalog


    • /

      返回文章
      返回