留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(8)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  794
  • HTML全文浏览量:  356
  • PDF下载量:  54
  • 被引次数: 0
Zexun Tang, Hongqi Ye, Xin Ma,  and Kai Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1618-1626. https://doi.org/10.1007/s12613-021-2296-0
Cite this article as:
Zexun Tang, Hongqi Ye, Xin Ma,  and Kai Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1618-1626. https://doi.org/10.1007/s12613-021-2296-0
引用本文 PDF XML SpringerLink
研究论文

颗粒微观结构对LiNi0.8Co0.1Mn0.1O2正极材料电性能的影响研究

  • 通讯作者:

    马鑫    E-mail: kaihan@csu.edu.cn

    韩凯    E-mail: kaihan@csu.edu.cn

文章亮点

  • (1) 系统地研究了LiNi0.8Co0.1Mn0.1O2材料二次颗粒与单晶态颗粒的性能差异。
  • (2) 优化出具有表面低碱度,较高克容量和高温高压循环稳定性的单晶LiNi0.8Co0.1Mn0.1O2
  • (3) 分析了单晶态材料在提高稳定性、降低副反应、抑制循环阻抗上升等方面的作用机理。
  • 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2(简称NCM811)能量密度高,有望满足电动汽车长续航里程要求,近年来成为业内关注和研究的焦点。然而,NCM811存在表面碱度高,稳定性差,长循环下颗粒容易碎裂和粉化等问题,阻碍了其大规模应用。本文将三元材料进行单晶化研究,即将二次球颗粒熔融形成单晶颗粒,以期解决三元材料结构和表面稳定性差等问题,并探索在高电压体系使用可行性。实验结果表明,将锂与过渡金属配比设为1.05,在910°C下烧结12 h,可得到形貌较好的单晶NCM811材料,此时材料表面碱度和晶格Ni/Li阳离子混排度均较低,分别为0.288wt%和2.24%。电性能评估结果显示,该材料在3.0–4.3 V下克容量可达191.5mAh/g,同时高温和高电压下循环稳定性得到明显提升,在高温50°C下,3.0–4.4V电压区间内循环100周,容量保持率可达95.1%,而二次颗粒材料仅为88.5%。相比二次颗粒,单晶形态的NCM811材料虽然倍率性能会稍有下降,但结构和表面稳定性更佳,在高电压高能量密度体系具有较好的应用前景。
  • Research Article

    Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material

    + Author Affiliations
    • Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles. As for the typical LiNi0.8Co0.1Mn0.1O2 material, the particle formation is significant for electrochemical properties of the cathode. In this work, the structure, morphology, and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 secondary particles and single crystals were systematically studied. A lower Ni2+/Ni3+ molar ratio of 0.66 and a lower residual alkali content of 0.228wt% were achieved on the surface of the single crystals. In addition, the single crystals showed a discharge capacity of 191.6 mAh/g at 0.2 C (~12 mAh/g lower than that of the secondary particles) and enhanced the electrochemical stability, especially when cycled at 50°C and in a wider electrochemical window (between 3.0 and 4.4 V vs. Li+/Li). The LiNi0.8Co0.1Mn0.1O2 secondary particles were suitable for applications requiring high specific capacity, whereas single crystals exhibited better stability, indicating that they are more suitable for use in long life requested devices.
    • loading
    • [1]
      H.J. Noh, S. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layeredLi[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
      [2]
      J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22(2010), No. 3, p. 587. doi: 10.1021/cm901452z
      [3]
      V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci., 4(2011), No. 9, p. 3243. doi: 10.1039/c1ee01598b
      [4]
      Q.W. Ran, H.Y. Zhao, Q. Wang, X.H. Shu, Y.Z. Hu, S. Hao, M. Wang, J.T. Liu, M.L. Zhang, H. Li, N.Y. Liu, and X.Q. Liu, Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature, Electrochim. Acta, 299(2019), p. 971. doi: 10.1016/j.electacta.2019.01.082
      [5]
      S.Y. Li, X.L. Fu, Y.W. Liang, S.X. Wang, X.A. Zhou, H. Dong, K.Y. Tuo, C.K. Gao, and X.L. Cui, Enhanced structural stability of boron-doped Layered@Spinel@Carbon heterostructured lithium-rich manganese-based cathode materials, ACS Sustainable Chem. Eng., 8(2020), No. 25, p. 9311. doi: 10.1021/acssuschemeng.0c00870
      [6]
      L.Z. Deng, F. Wu, X.G. Gao, and W.P. Wu, Development of a LiFePO4-based high power lithium secondary battery for HEVs applications, Rare Met., 39(2020), No. 12, p. 1457. doi: 10.1007/s12598-014-0316-1
      [7]
      H.Y. Zhao, X.Y. Gao, Y.F. Li, Q.W. Ran, C.G. Fu, Y.P. Feng, J.T. Liu, X.Q. Liu, and J.X. Su, Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li–Mn–O material, Ceram. Int., 45(2019), No. 14, p. 17591. doi: 10.1016/j.ceramint.2019.05.324
      [8]
      S. Li, H.Y. Zhou, Z.M. Wang, J.Q. Deng, and Q.R. Yao, Structureand electrochemical properties of La1−xMgxNi2.8Co0.4Mn0.1Al0.2(x = 0.25, 0.30, 0.33) hydrogen storage alloys, Rare Met., 39(2020), No. 12, p. 1464. doi: 10.1007/s12598-014-0322-3
      [9]
      Q.W. Ran, H.Y. Zhao, X.H. Shu, Y.Z. Hu, S. Hao, Q.Q. Shen, W. Liu, J.T. Liu, M.L. Zhang, H. Li, and X.Q. Liu, Enhancing the electrochemical performance of Ni-rich layered oxide cathodes by combination of the gradient doping and dual-conductive layers coating, ACS Appl. Energy Mater., 2(2019), No. 5, p. 3120. doi: 10.1021/acsaem.8b02112
      [10]
      N. Nitta, F.X. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(2015), No. 5, p. 252. doi: 10.1016/j.mattod.2014.10.040
      [11]
      P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nat. Mater., 11(2012), No. 1, p. 19. doi: 10.1038/nmat3191
      [12]
      J.H. Kim, K.J. Park, S.J. Kim, C.S. Yoon, and Y.K. Sun, A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2), J. Mater. Chem. A, 7(2019), No. 6, p. 2694. doi: 10.1039/C8TA10438G
      [13]
      C.S. Yoon, M.H. Choi, B.B. Lim, E.J. Lee, and Y.K. Sun, Review–High-capacity Li[Ni1−xCox/2Mnx/2]O2 (x = 0.1, 0.05, 0) cathodes for next-generation Li-ion battery, J. Electrochem. Soc., 162(2015), No. 14, p. A2483. doi: 10.1149/2.0101514jes
      [14]
      Q.W. Ran, H.Y. Zhao, Y.Z. Hu, S. Hao, J.T. Liu, H. Li, and X.Q. Liu, Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage, J. Alloys Compd., 834(2020), art. No. 155099. doi: 10.1016/j.jallcom.2020.155099
      [15]
      Q.W. Ran, H.Y. Zhao, Y.Z. Hu, S. Hao, Q.Q. Shen, J.T. Liu, H. Li, Y. Xiao, L. Li, L.P. Wang, and X.Q. Liu, Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage, ACS Appl. Mater. Interfaces, 12(2020), No. 8, p. 9268. doi: 10.1021/acsami.9b20872
      [16]
      W.J. Tang, Z.X. Chen, F. Xiong, F. Chen, C. Huang, Q. Gao, T.Z. Wang, Z.H. Yang, and W.X. Zhang, An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2, J. Power Sources, 412(2019), p. 246. doi: 10.1016/j.jpowsour.2018.11.062
      [17]
      F. Xiong, Z.X. Chen, C. Huang, T.Z. Wang, W.X. Zhang, Z.H. Yang, and F. Chen, Near-equilibrium control of Li2TiO3 nanoscale layer coated on LiNi0.8Co0.1Mn0.1O2 cathode materials for enhanced electrochemical performance, Inorg. Chem., 58(2019), No. 22, p. 15498. doi: 10.1021/acs.inorgchem.9b02533
      [18]
      Y. Makimura, T. Sasaki, T. Nonaka, Y.F. Nishimura, T. Uyama, C. Okuda, Y. Itou, and Y. Takeuchi, Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries, J. Mater. Chem. A, 4(2016), No. 21, p. 8350. doi: 10.1039/C6TA01251E
      [19]
      S.G. Woo, J.H. Kim, H.R. Kim, W. Cho, and J.S. Yu, Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells, J. Electroanal. Chem., 799(2017), p. 315. doi: 10.1016/j.jelechem.2017.06.034
      [20]
      A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
      [21]
      W.D. Li, H.Y. Asl, Q. Xie, and A. Manthiram, Collapse of LiNi1–xyCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries, J. Am. Chem. Soc., 141(2019), No. 13, p. 5097. doi: 10.1021/jacs.8b13798
      [22]
      J.M. Lim, T. Hwang, D. Kim, M.S. Park, K. Cho, and M. Cho, Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material, Sci. Rep., 7(2017), art. No. 39669. doi: 10.1038/srep39669
      [23]
      A.O. Kondrakov, H. Geßwein, K. Galdina, L. de Biasi, V. Meded, E.O. Filatova, G. Schumacher, W. Wenzel, P. Hartmann, T. Brezesinski, and J. Janek, Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation, J. Phys. Chem. C, 121(2017), No. 44, p. 24381. doi: 10.1021/acs.jpcc.7b06598
      [24]
      X. Xu, H. Huo, J.Y. Jian, L.G. Wang, H. Zhu, S. Xu, X.S. He, G.P. Yin, C.Y. Du, and X.L. Sun, Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries, Adv. Energy Mater., 9(2019), No. 15, art. No. 1803963. doi: 10.1002/aenm.201803963
      [25]
      J.L. Li, R.M. Yao, and C.B. Cao, LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery, ACS Appl. Mater. Interfaces, 6(2014), No. 7, p. 5075. doi: 10.1021/am500215b
      [26]
      L. Wang, B.R. Wu, D.B. Mu, X.J. Liu, Y.Y. Peng, H.L. Xu, Q. Liu, L. Gai, and F. Wu, Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries, J. Alloys Compd., 674(2016), p. 360. doi: 10.1016/j.jallcom.2016.03.061
      [27]
      Z.D. Huang, X.M. Liu, S.W. Oh, B. Zhang, P.C. Ma, and J.K. Kim, Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries, J. Mater. Chem., 21(2011), No. 29, p. 10777. doi: 10.1039/c1jm00059d
      [28]
      B.L. Ellis, K.T. Lee, and L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater., 22(2010), No. 3, p. 691. doi: 10.1021/cm902696j
      [29]
      S. Xu, C.Y. Du, X. Xu, G.K. Han, P.J. Zuo, X.Q. Cheng, Y.L. Ma, and G.P. Yin, A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries, Electrochim. Acta, 248(2017), p. 534. doi: 10.1016/j.electacta.2017.07.169
      [30]
      K. Qian, B.H. Huang, Y.X. Liu, M. Wagemaker, M. Liu, H. Duan, D.Q. Liu, Y.B. He, B.H. Li, and F.Y. Kang, Increase and discretization of the energy barrier for individual LiNixCoyMnyO2(x + 2y = 1) particles with the growth of a Li2CO3 surface film, J. Mater. Chem. A, 7(2019), No. 20, p. 12723. doi: 10.1039/C9TA01443H
      [31]
      L.W. Liang, G.R. Hu, F. Jiang, and Y.B. Cao, Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method, J. Alloys Compd., 657(2016), p. 570. doi: 10.1016/j.jallcom.2015.10.177
      [32]
      T. Chen, X. Li, H. Wang, X.X. Yan, L. Wang, B.W. Deng, W.J. Ge, and M.Z. Qu, The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material, J. Power Sources, 374(2018), p. 1. doi: 10.1016/j.jpowsour.2017.11.020
      [33]
      B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 34(2001), No. 2, p. 210. doi: 10.1107/S0021889801002242
      [34]
      H.B. Lin, Y.M. Zhang, H.B. Rong, S.W. Mai, J.N. Hu, Y.H. Liao, L.D. Xing, M.Q. Xu, X.P. Li, and W.S. Li, Crystallographic facet- and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery, J. Mater. Chem. A, 2(2014), No. 30, p. 11987. doi: 10.1039/C4TA01810A
      [35]
      Y.J. Bi, W.C. Yang, R. Du, J.J. Zhou, M. Liu, Y. Liu, and D.Y. Wang, Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery, J. Power Sources, 283(2015), p. 211. doi: 10.1016/j.jpowsour.2015.02.095
      [36]
      N.T. Wu, H. Wu, J.K. Kim, X.M. Liu, and Y. Zhang, Restoration of degraded nickel-rich cathode materials for long-life lithium-ion batteries, ChemElectroChem, 5(2018), No. 1, p. 78. doi: 10.1002/celc.201700979
      [37]
      S. Gao, Y.T. Cheng, and M. Shirpour, Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 982. doi: 10.1021/acsami.8b19349
      [38]
      W. Liu, P. Oh, X.E. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54(2015), No. 15, p. 4440. doi: 10.1002/anie.201409262
      [39]
      J.X. Zheng, Y.K. Ye, T.C. Liu, Y.G. Xiao, C.M. Wang, F. Wang, and F. Pan, Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control, Acc. Chem. Res., 52(2019), No. 8, p. 2201. doi: 10.1021/acs.accounts.9b00033
      [40]
      E.Y. Zhao, M.M. Chen, Z.B. Hu, D.F. Chen, L.M. Yang, and X.L. Xiao, Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating, J. Power Sources, 343(2017), p. 345. doi: 10.1016/j.jpowsour.2017.01.066

    Catalog


    • /

      返回文章
      返回