Cite this article as: |
Huixiang Yu, Dexin Yang, Jiaming Zhang, Guangyuan Qiu, and Ni Zhang, Effect of Al content on the reaction between Fe−10Mn−xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO−SiO2−Al2O3−MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 256-262. https://doi.org/10.1007/s12613-021-2298-y |
于会香 E-mail: yuhuixiang@ustb.edu.cn
轻量化是世界汽车发展的方向,中高锰钢因高强、高塑、高加工硬化率等优异的力学性能引起了人们的很大关注。除Mn含量高外,该钢种通常含有较高的Al以降低材料密度、防止氢延迟断裂等。因合金含量高,钢液中的溶质元素和顶渣会发生较强的渣/钢反应,进而对钢液、顶渣、洁净度等产生重要影响。本文旨在研究不同Al含量的中锰钢与精炼渣的反应及其影响。本文采用渣/钢平衡的实验方法研究了不同Al 含量(0.035wt%, 0.5wt%, 1wt%, 2wt%)的Fe−10Mn−xAl 合金体系与CaO−SiO2−20wt%Al2O3−6wt%MgO (CaO/SiO2 = 4)精炼渣之间的反应,及其对钢液和炉渣成分、非金属夹杂物的影响;在实验基础上,对钢液和炉渣成分变化以及夹杂物转变进行了热力学分析与讨论。研究结果表明,渣/钢反应后,钢中Al含量显著降低,初始Al含量对反应后钢、渣的成分有重要影响。随着初始Al含量增加,钢中的Si和渣中的Al2O3逐渐增加,而渣中的SiO2和MnO逐渐减少。造成该变化的原因是:随着初始Al含量增加,钢液中的Al逐渐替代Mn与渣中SiO2反应,即渣/钢之间的主控反应由2[Mn] + (SiO2) = 2(MnO) + [Si]转变为4[Al] + 3(SiO2) = 2(Al2O3) + 3[Si]。随着初始Al含量增加,钢中夹杂物类型也发生很大变化,转变路线为:MnO → MnO−Al2O3−MgO → MgO → MnO−CaO−Al2O3−MgO 和 MnO−CaO−MgO,相应的夹杂物形状由球形变为不规则状,最后又变为类球形。其转变机理是:随着初始Al含量增加,钢中Al逐渐替代Mn与渣中SiO2反应,且Mg、Ca依次从渣中还原进入钢液,故而夹杂物类型发生上述转变。
The effect of Al content (0.035wt%, 0.5wt%, 1wt%, and 2wt%) on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with CaO−SiO2−Al2O3−MgO slag was studied using the method of slag/steel reaction. The experimental results showed that as the initial content of Al increased from 0.035wt% to 2wt%, Al gradually replaced Mn to react with SiO2 in slag to avoid the loss of Mn due to the reaction; this process caused both Al2O3 in slag and Si in steel to increase while SiO2 and MnO in slag to reduce. In addition, the type of inclusions also evolved as the initial Al content increased. The evolution route of inclusions was MnO → MnO−Al2O3−MgO → MgO → MnO−CaO−Al2O3−MgO and MnO−CaO−MgO. The shape of inclusions evolved from spherical to irregular, became faceted, and finally transformed to spherical. The average size of inclusions presented a trend that was increasing first and then decreasing. The transformation mechanism of inclusions was explored. As the initial content of Al increased, Mg and Ca were reduced from top slag into molten steel in sequence, which consequently caused the transformation of inclusions.
[1] |
P. Von Schweinichen, Z.Y. Chen, D. Senk, and A. Lob, Effect of different casting parameters on the cleanliness of high manganese steel ingots compared to high carbon steel, Metall. Mater. Trans. A, 44(2013), No. 12, p. 5416. doi: 10.1007/s11661-013-1949-7
|
[2] |
O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application, Int. J. Plast., 16(2000), No. 10-11, p. 1391. doi: 10.1016/S0749-6419(00)00015-2
|
[3] |
S.W. Hwang, J.H. Ji, and K.T. Park, Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels, Mater. Sci. Eng. A, 528(2011), No. 24, p. 7267. doi: 10.1016/j.msea.2011.06.020
|
[4] |
Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
|
[5] |
A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A, 483-484(2008), p. 184. doi: 10.1016/j.msea.2006.12.170
|
[6] |
Y.J. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida, High-strength Fe–20Mn–Al–C-based alloys with low density, ISIJ Int., 50(2010), No. 6, p. 893. doi: 10.2355/isijinternational.50.893
|
[7] |
Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
|
[8] |
M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, The effects of thermomechanical training treatment on the deformation characteristics of Fe–Mn–Si–Al alloys, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 353. doi: 10.1016/j.msea.2008.07.026
|
[9] |
K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim, Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2922. doi: 10.1016/j.msea.2010.12.085
|
[10] |
J. Kim, S.J. Lee, and B.C. De Cooman, Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning–induced plasticity, Scripta Mater., 65(2011), No. 4, p. 363. doi: 10.1016/j.scriptamat.2011.05.014
|
[11] |
A. Grajcar, U. Galisz, and L. Bulkowski, Non-metallic inclusions in high manganese austenitic alloys, Arch. Mater. Sci. Eng., 50(2011), No. 1, p. 21.
|
[12] |
G. Gigacher, W. Krieger, P.R. Scheller, and C. Thomser, Non-metallic inclusions in high-manganese-alloy steels, Steel Res. Int., 76(2005), No. 9, p. 644. doi: 10.1002/srin.200506069
|
[13] |
J.H. Park, D.J. Kim, and D.J. Min, Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels, Metall. Mater. Trans. A, 43(2012), No. 7, p. 2316. doi: 10.1007/s11661-012-1088-6
|
[14] |
X.L. Xin, J. Yang, Y.N. Wang, R.Z. Wang, W.L. Wang, H.G. Zheng, and H.T. Hu, Effects of Al content on non-metallic inclusion evolution in Fe–16Mn–xAl–0.6C high Mn TWIP steel, Ironmaking Steelmaking, 43(2016), No. 3, p. 234. doi: 10.1179/1743281215Y.0000000041
|
[15] |
S.C. Chen, H.X. Ye, and X.Q. Lin, Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 670. doi: 10.1007/s12613-017-1449-7
|
[16] |
C.L. Zhuang, J.H. Liu, Z.L. Mi, H.T. Jiang, D. Tang, and G.X. Wang, Non-metallic inclusions in TWIP steel, Steel Res. Int., 85(2014), No. 10, p. 1432. doi: 10.1002/srin.201300354
|
[17] |
M. Peymandar, S. Schmuck, P. von Schweinichen, and D. Senk, Interfacial reactions between slag and melt in the new world of high manganese steels, [in] Proc. of the TMS2014 Annual Meeting, San Diego, 2014, p. 291.
|
[18] |
H.X. Yu, D.X. Yang, M.M. Li, and N. Zhang, Effects of Al addition on the reaction between high-manganese steel and CaO–SiO2–Al2O3–MgO slag, Steel Res. Int., 91(2020), No. 10, art. No. 2000143. doi: 10.1002/srin.202000143
|
[19] |
D.J. Kim and J.H. Park, Interfacial reaction between CaO–SiO2–MgO–Al2O3 flux and Fe–xMn–yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) Steel at 1873 K (1600°C), Metall. Mater. Trans. B, 43(2012), No. 4, p. 875. doi: 10.1007/s11663-012-9667-x
|
[20] |
Y.B. Kang, M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, and H.G. Lee, A reaction between high Mn–high Al steel and CaO–SiO2–type molten mold flux: Part II. Reaction mechanism, interface morphology, and Al2O3 accumulation in molten mold flux, Metall. Mater. Trans. B, 44(2013), No. 2, p. 309. doi: 10.1007/s11663-012-9769-5
|
[21] |
J. Park, S. Sridhar, and R.J. Fruehan, Kinetics of reduction of SiO2 in SiO2–Al2O3–CaO slags by Al in Fe–Al(–Si) melts, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1380. doi: 10.1007/s11663-014-0076-1
|
[22] |
H.X. Yu, D.X. Yang, M.M. Li, and M. Pan, Metallurgical characteristics of refining slag used for high manganese steel, Metall. Res. Technol., 116(2019), No. 6, art. No. 620. doi: 10.1051/metal/2019050
|
[23] |
Z.Y. Deng, L. Chen, G.D. Song, and M.Y. Zhu, Formation and evolution of non-metallic inclusions in Ti-bearing Al-killed steel during secondary refining process, Metall. Mater. Trans. B, 51(2020), No. 1, p. 173. doi: 10.1007/s11663-019-01728-4
|
[24] |
H. Todoroki and K. Mizuno, Variation of inclusion composition in 304 stainless steel deoxidized with aluminum, Iron Steelmaker, 30(2003), No. 3, p. 60.
|
[25] |
Y.Q. Ji, C.Y. Liu, Y. Lu, H.X. Yu, F.X. Huang, and X.H. Wang, Effects of FeO and CaO/Al2O3 ratio in slag on the cleanliness of Al-killed steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3127. doi: 10.1007/s11663-018-1397-2
|
[26] |
M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010, p. 24.
|
[27] |
K. Fujii, T. Nagasaka, and M. Hino, Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO Al2O3, ISIJ Int., 40(2000), No. 11, p. 1059. doi: 10.2355/isijinternational.40.1059
|
[28] |
H. Todoroki and K. Mizuno, Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum, ISIJ Int., 44(2004), No. 8, p. 1350. doi: 10.2355/isijinternational.44.1350
|
[29] |
M. Jiang, X.H. Wang, B. Chen, and W.J. Wang, Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag, ISIJ Int., 50(2010), No. 1, p. 95. doi: 10.2355/isijinternational.50.95
|
[30] |
H.X. Yu, X.H. Wang, J. Zhang, and W.J. Wang, Characteristics and metallurgical effects of medium basicity refining slag on low melting temperature inclusions, J. Iron Steel Res. Int., 22(2015), No. 7, p. 573. doi: 10.1016/S1006-706X(15)30042-X
|
[31] |
Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si-Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1083. doi: 10.1007/s12613-019-1957-8
|