留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1041
  • HTML全文浏览量:  359
  • PDF下载量:  71
  • 被引次数: 0
Lejun Zhou, Hao Luo, Wanlin Wang, Houfa Wu, Erzhuo Gao, You Zhou,  and Daoyuan Huang, Wetting behavior of CaO–Al2O3-based mold flux with various BaO and MgO contents on the steel substrate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1179-1185. https://doi.org/10.1007/s12613-021-2300-8
Cite this article as:
Lejun Zhou, Hao Luo, Wanlin Wang, Houfa Wu, Erzhuo Gao, You Zhou,  and Daoyuan Huang, Wetting behavior of CaO–Al2O3-based mold flux with various BaO and MgO contents on the steel substrate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1179-1185. https://doi.org/10.1007/s12613-021-2300-8
引用本文 PDF XML SpringerLink
研究论文

BaO和MgO含量对CaO–Al2O3系保护渣与钢基底之间润湿行为的影响

  • 通讯作者:

    王万林    E-mail: wanlin.wang@gmail.com

  • 结晶器内的界面现象对连铸过程的顺行和铸件的质量有很大的影响,虽然钢–渣之间的界面特性已经被许多研究者研究过,但是这些研究大多是已钢或铁为研究对象。传统的CaO–SiO2系保护渣在参与高铝钢连铸时会与钢中的Al发生化学反应,导致保护渣的成分和性能发生变化,从而影响连铸顺行。因此,性能稳定的非反应型CaO–Al2O3系保护渣,成为高铝钢连铸过程的一种潜在功能材料。本文采用卧滴法,研究了BaO和MgO含量对非反应型CaO–Al2O3系保护渣润湿行为的影响,测量了渣-钢之间的接触角,并计算了界面张力。此外,还利用XPS测定了钢-渣界面处的氧种类,以证明保护渣成分和界面之间的内在联系。研究结果表明:BaO和MgO对保护渣的润湿行为有着不同的影响,具体而言,当BaO含量从3wt%增加到7wt%时,渣与IF钢的接触角从62.4°增加到74.5°,界面张力也从1630.3 mN/m增加到1740.8 mN/m。 XPS的结果表明,随着BaO的加入,钢–渣界面处的熔体结构发生聚合,O−(非桥氧)和O2−(游离氧)的比例降低,而O0(桥氧)的比例增加,这说明BaO的加入会降低熔剂对IF钢的润湿性。而当MgO含量从3wt%增加到7wt%时,渣与IF钢基体的接触角从62.4°减少到51.3°,界面张力也从1630.3 mN/m降低到1539.7 mN/m。加入MgO时,钢–渣界面处的熔体结构发生解聚,由于部分O0分解为O和O2−,导致O0的比例减少,这说明MgO提高了IF钢的润湿性,使熔剂更容易在IF钢表面浸润。引起这一结果的主要原因是,Mg2+离子半径小于Ba2+离子,Mg2+的静电势也高于Ba2+,较高的静电势导致O2−和Mg2+之间产生较强的极化效应,导致熔体中Mg–O键由离子键向共价键转变,从而使得Mg2+的电荷补偿效应远远小于Ba2+
  • Research Article

    Wetting behavior of CaO–Al2O3-based mold flux with various BaO and MgO contents on the steel substrate

    + Author Affiliations
    • The interfacial phenomena in mold have a great impact on the smooth operation of continuous casting process and the quality of the casting product. In this paper, the wetting behavior of CaO–Al2O3-based mold flux with different BaO and MgO contents was studied. The results showed that the contact angle between molten flux and interstitial free (IF) steel substrate increased from 62.4° to 74.5° with the increase of BaO content from 3wt% to 7wt%, while it decreased from 62.4° to 51.3° with the increase of MgO content from 3wt% to 7wt%. The interfacial tension also increased from 1630.3 to 1740.8 mN/m when the BaO content increased, but it reduced from 1630.3 to 1539.7 mN/m with the addition of MgO. The changes of contact angle and interfacial tension were mainly due to the fact that the bridging oxygen (O0) at the interface was broken into non-bridging oxygen (O) and free oxygen (O2−) by MgO. However, more O and O2− connected into O0 when BaO was added, since the charge compensation effect of BaO was so stronger that it offset the effect of providing O2−.
    • loading
    • [1]
      J. Yang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effects of B2O3 on crystallization, structure, and heat transfer of CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 50(2019), No. 1, p. 291. doi: 10.1007/s11663-018-1467-5
      [2]
      C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim, Crystallization characteristics of CaO–Al2O3-based mold flux and their effects on in-mold performance during high-aluminum TRIP steels continuous casting, Metall. Mater. Trans. B, 45(2014), No. 3, p. 1081. doi: 10.1007/s11663-014-0034-y
      [3]
      Z.Y. Cai, B. Song, L.F. Li, Z. Liu, and X.K. Cui, Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 565. doi: 10.1007/s12613-019-1765-1
      [4]
      J. Yang, H.J. Cui, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Interfacial reaction between high-Al steel and CaO–Al2O3-based mold fluxes with different CaO/Al2O3 ratios at 1773 K (1500 °C), Metall. Mater. Trans. B, 50(2019), No. 6, p. 2636. doi: 10.1007/s11663-019-01667-0
      [5]
      Y. Nakamura, T. Ando, K. Kurata, and M. Ikeda, Effect of chemical composition of mold powder on the erosion of submerged nozzles for continuous casting of steel, Trans. Iron Steel Inst. Jpn., 26(1986), No. 12, p. 1052. doi: 10.2355/isijinternational1966.26.1052
      [6]
      J. Yang, J.Q. Zhang, O. Ostrovski, Y. Sasaki, C. Zhang, and D.X. Cai, Dynamic wetting of high-Al steel by CaO–SiO2- and CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2175. doi: 10.1007/s11663-019-01643-8
      [7]
      P. Fei, Y. Min, C.J. Liu, and M.F. Jiang, Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 186. doi: 10.1007/s12613-019-1723-y
      [8]
      L.J. Zhou, Z.H. Pan, W.L. Wang, and J.Y. Chen, Study of the Ni–Cr–Fe-based alloy casting process using a mold simulator technique, Steel Res. Int., 91(2020), No. 3, art. No. 1900503. doi: 10.1002/srin.201900503
      [9]
      A. Sharan and A.W. Cramb, Surface tension and wettability studies of liquid Fe–Ni–O alloys, Metall. Mater. Trans. B, 28(1997), No. 3, p. 465. doi: 10.1007/s11663-997-0113-4
      [10]
      J. Lee and K. Morita, Evaluation of surface tension and adsorption for liquid Fe–S alloys, ISIJ Int., 42(2002), No. 6, p. 588. doi: 10.2355/isijinternational.42.588
      [11]
      K. Nakashima and K. Mori, Interfacial properties of liquid iron alloys and liquid slags relating to iron- and steel-making processes, ISIJ Int., 32(1992), No. 1, p. 11. doi: 10.2355/isijinternational.32.11
      [12]
      E.J. Jung, W. Kim, I. Sohn, and D.J. Min, A study on the interfacial tension between solid iron and CaO–SiO2–MO system, J. Mater. Sci., 45(2010), No. 8, p. 2023. doi: 10.1007/s10853-009-3946-1
      [13]
      W.L. Wang, J.W. Li, L.J. Zhou, and J. Yang, Effect of MnO content on the interfacial property of mold flux and steel, Met. Mater. Int., 22(2016), No. 4, p. 700. doi: 10.1007/s12540-016-5670-0
      [14]
      L.J. Zhou, J.W. Li, W.L. Wang, and I. Sohn, Wetting behavior of mold flux droplet on steel substrate with or without interfacial reaction, Metall. Mater. Trans. B, 48(2017), No. 4, p. 1943. doi: 10.1007/s11663-017-0972-2
      [15]
      W.L. Wang, H.Q. Shao, L.J. Zhou, H. Luo, and H.F. Wu, Rheological behavior of the CaO–Al2O3-based mold fluxes with different Na2O contents, Ceram. Int., 46(2020), No. 17, p. 26880. doi: 10.1016/j.ceramint.2020.07.164
      [16]
      W.L. Wang, S.F. Dai, L.J. Zhou, J.K. Zhang, W.G. Tian, and J.L. Xu, Viscosity and structure of MgO–SiO2-based slag melt with varying B2O3 content, Ceram. Int., 46(2020), No. 3, p. 3631. doi: 10.1016/j.ceramint.2019.10.082
      [17]
      L.J. Zhou, Z.H. Pan, W.L. Wang, and J.Y. Chen, Optimization of the interfacial properties between mold flux and TiN substrate through the regulation of B2O3, ISIJ Int., 60(2020), No. 12, p. 2838. doi: 10.2355/isijinternational.ISIJINT-2020-184
      [18]
      L.J. Zhou, Z.H. Pan, W.L. Wang, J.Y. Chen, L.W. Xue, T.S. Zhang, and L. Zhang, Interfacial interactions between inclusions comprising TiO2 or TiN and the mold flux during the casting of titanium-stabilized stainless steel, Metall. Mater. Trans. B, 51(2020), No. 1, p. 85. doi: 10.1007/s11663-019-01746-2
      [19]
      R. Brooks, I. Egry, S. Seetharaman, and D. Grant, Reliable data for high-temperature viscosity and surface tension: Results from a European project, High Temp.-High Pressures, 33(2001), No. 6, p. 631. doi: 10.1068/htwu323
      [20]
      M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani, Evaluation of surface tension of molten slag in multi-component systems, ISIJ Int., 47(2007), No. 7, p. 935. doi: 10.2355/isijinternational.47.935
      [21]
      K.C. Mills, L. Yuan, and R.T. Jones, Estimating the physical properties of slags, J. South. Afr. Inst. Min. Metall., 111(2011), No. 10, p. 649.
      [22]
      K.C. Mills, S. Karagadde, P.D. Lee, L. Yuan, and F. Shahbazian, Calculation of physical properties for use in models of continuous casting process-Part 1: Mould slags, ISIJ Int., 56(2016), No. 2, p. 264. doi: 10.2355/isijinternational.ISIJINT-2015-364
      [23]
      H.P. Sun, K. Nakashima, and K. Mori, Influence of slag composition on slag–iron interfacial tension, ISIJ Int., 46(2006), No. 3, p. 407. doi: 10.2355/isijinternational.46.407
      [24]
      K. Ogino, Interfacial tension between molten iron alloys and molten slags, Tetsu-to-Hagane, 61(1975), No. 8, p. 2118. doi: 10.2355/tetsutohagane1955.61.8_2118
      [25]
      S.C. Park, H. Gaye, and H.G. Lee, Interfacial tension between molten iron and CaO–SiO2–MgO–Al2O3–FeO slag system, Ironmaking Steelmaking, 36(2009), No. 1, p. 3. doi: 10.1179/174328108X358622
      [26]
      R. Hagemann, H.P. Heller, S. Lachmann, S. Seetharaman, and P.R. Scheller, Slag entrainment in continuous casting and effect of interfacial tension, Ironmaking Steelmaking, 39(2012), No. 7, p. 508. doi: 10.1179/1743281212Y.0000000018
      [27]
      E.J. Jung and D.J. Min, Effect of Al2O3 and MgO on interfacial tension between calcium silicate-based melts and a solid steel substrate, Steel Res. Int., 83(2012), No. 7, p. 705. doi: 10.1002/srin.201200023
      [28]
      J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn, High-temperature wettability and structure of the TiO2–MnO–SiO2–Al2O3 welding flux system, J. Non-Cryst. Solids, 432(2016), p. 218. doi: 10.1016/j.jnoncrysol.2015.10.009
      [29]
      L.J. Zhou, H. Li, W.L. Wang, D. Xiao, L. Zhang, and J. Yu, Effect of Li2O on the behavior of melting, crystallization, and structure for CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2232. doi: 10.1007/s11663-018-1327-3
      [30]
      W.L. Wang, E.Z. Gao, L.J. Zhou, L. Zhang, and H. Li, Effect of Al2O3/SiO2 and CaO/Al2O3 ratios on wettability and structure of CaO–SiO2–Al2O3-based mold flux system, J. Iron. Steel Res. Int., 26(2019), No. 4, p. 355. doi: 10.1007/s42243-018-0207-z
      [31]
      H.Y. Yu, X.L. Pan, Y.P. Tian, and G.F. Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO–Al2O3–Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 924. doi: 10.1007/s12613-019-1951-1
      [32]
      J.Y. Chen, W.L. Wang, L.J. Zhou, and Z.H. Pan, Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux, J. Iron Steel Res. Int., 28(2021), No. 5, p. 552. doi: 10.1007/s42243-020-00439-4
      [33]
      E.Z. Gao, W.L. Wang, and L. Zhang, Effect of alkaline earth metal oxides on the viscosity and structure of the CaO–Al2O3 based mold flux for casting high-al steels, J. Non-Cryst. Solids, 473(2017), p. 79. doi: 10.1016/j.jnoncrysol.2017.07.029
      [34]
      G.H. Zhang, K.C. Chou, and K. Mills, Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags, ISIJ Int., 52(2012), No. 3, p. 355. doi: 10.2355/isijinternational.52.355
      [35]
      J.A. Duffy and M.D. Ingram, Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses, J. Inorg. Nucl. Chem., 37(1975), No. 5, p. 1203. doi: 10.1016/0022-1902(75)80469-6

    Catalog


    • /

      返回文章
      返回