留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  1311
  • HTML全文浏览量:  538
  • PDF下载量:  53
  • 被引次数: 0
Jie Wang, Tengfei Fan, Jianchen Lu, Xiaoming Cai, Lei Gao,  and Jinming Cai, Chemical vapor deposition growth behavior of graphene, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 136-143. https://doi.org/10.1007/s12613-021-2302-6
Cite this article as:
Jie Wang, Tengfei Fan, Jianchen Lu, Xiaoming Cai, Lei Gao,  and Jinming Cai, Chemical vapor deposition growth behavior of graphene, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 136-143. https://doi.org/10.1007/s12613-021-2302-6
引用本文 PDF XML SpringerLink
研究论文

石墨烯的化学气相沉积生长行为探究

  • 通讯作者:

    蔡金明    E-mail: j.cai@kust.edu.cn

文章亮点

  • (1) 成功在多晶铜表面通过化学气相沉积方法制备了多种形状的石墨烯。
  • (2) 控制CVD腔体甲烷与氢气体积比(CH4/H2)精准控制形成的石墨烯结构。
  • (3) 使用扫描电镜(SEM)和扫描隧道显微镜(STM)对石墨烯进行高分辨表征。
  • 前人研究发现石墨烯具有多种形状,包括三角形、矩形、六边形、U形、圆形和树突形。虽然可以通过调整载气(氢气和氩气)的比例定制不同形貌的石墨烯,但甲烷与氢气体积比(CH4/H2)对不同形貌石墨烯形成的影响尚未有系统的报道。分形石墨烯沿着已有的划痕生长已有报道,但仍未发现分形石墨烯以不同角度堆叠的现象。通过调节CH4/H2的体积比从1:50到1:100,我们在多晶铜衬底上通过真空化学气相沉积制备枝晶、矩形和六边形等不同形貌石墨烯,得到了石墨烯的两种主要形态(树枝状和六边形)。由于CH4/H2体积比的变化,观察到结构的对称和不对称现象。同时,研究了在多晶铜衬底上生长的分形石墨烯的演化过程。当石墨烯的平衡生长状态被破坏时,其固有的六边形对称结构将转变为非六边形对称结构。我们系统、全面地研究了在多晶铜上生长的不同形貌石墨烯的演化过程,该演化过程受甲烷与氢气体积比的影响,且可控。此外,还观察到雪花状石墨烯的拼接和不同角度的石墨烯堆叠现象。

  • Research Article

    Chemical vapor deposition growth behavior of graphene

    + Author Affiliations
    • The optimized growth parameters of graphene with different morphologies, such as dendrites, rectangle, and hexagon, have been obtained by low-pressure chemical vapor deposition on polycrystalline copper substrates. The evolution of fractal graphene, which grew on the polycrystalline copper substrate, has also been observed. When the equilibrium growth state of graphene is disrupted, its intrinsic hexagonal symmetry structure will change into a non-hexagonal symmetry structure. Then, we present a systematic and comprehensive study of the evolution of graphene with different morphologies grown on solid copper as a function of the volume ratio of methane to hydrogen in a controllable manner. Moreover, the phenomena of stitching snow-like graphene together and stacking graphene with different angles was also observed.

    • loading
    • [1]
      K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(2004), No. 5696, p. 666. doi: 10.1126/science.1102896
      [2]
      Z. Yan, J. Lin, Z.W. Peng, Z.Z. Sun, Y. Zhu, L. Li, C.S. Xiang, E.L. Samuel, C. Kittrell, and J.M. Tour, Toward the synthesis of wafer-scale single-crystal graphene on copper foils, ACS Nano, 6(2012), No. 10, p. 9110. doi: 10.1021/nn303352k
      [3]
      J.Y. Sun, Y.F. Zhang, and Z.F. Liu, Direct chemical vapor deposition growth of graphene on insulating substrates, ChemNanoMat, 2(2016), No. 1, p. 9. doi: 10.1002/cnma.201500160
      [4]
      X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
      [5]
      B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X.D. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 546(2017), No. 7657, p. 270. doi: 10.1038/nature22391
      [6]
      R. Kato, S. Minami, Y. Koga, and M. Hasegawa, High growth rate chemical vapor deposition of graphene under low pressure by RF plasma assistance, Carbon, 96(2016), p. 1008. doi: 10.1016/j.carbon.2015.10.061
      [7]
      Q.K. Yu, L.A. Jauregui, W. Wu, R. Colby, J.F. Tian, Z.H. Su, H.L. Cao, Z.H. Liu, D. Pandey, D.G. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J.M. Bao, S.S. Pei, and Y.P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition, Nat. Mater., 10(2011), No. 6, p. 443. doi: 10.1038/nmat3010
      [8]
      G.Q. Ding, Y. Zhu, S.M. Wang, Q. Gong, L. Sun, T.R. Wu, X.M. Xie, and M.H. Jiang, Chemical vapor deposition of graphene on liquid metal catalysts, Carbon, 53(2013), p. 321. doi: 10.1016/j.carbon.2012.11.018
      [9]
      D.C. Geng, L. Meng, B.Y. Chen, E.L. Gao, W. Yan, H. Yan, B.R. Luo, J. Xu, H.P. Wang, Z.P. Mao, Z.P. Xu, L. He, Z.Y. Zhang, L.M. Peng, and G. Yu, Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface, Adv. Mater., 26(2014), No. 37, p. 6423. doi: 10.1002/adma.201401277
      [10]
      Z.Y. Cai, B.L. Liu, X.L. Zou, and H.M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures, Chem. Rev., 118(2018), No. 13, p. 6091. doi: 10.1021/acs.chemrev.7b00536
      [11]
      B.R. Luo, E.L. Gao, D.C. Geng, H.P. Wang, Z.P. Xu, and G. Yu, Etching-controlled growth of graphene by chemical vapor deposition, Chem. Mater., 29(2017), No. 3, p. 1022. doi: 10.1021/acs.chemmater.6b03672
      [12]
      S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, A kinetic Monte Carlo model for the growth and etching of graphene during chemical vapor deposition, Carbon, 146(2019), p. 399. doi: 10.1016/j.carbon.2019.02.016
      [13]
      S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, Unveiling the competitive role of etching in graphene growth during chemical vapor deposition, 2D Mater., 6(2018), No. 1, art. No. 015031. doi: 10.1088/2053-1583/aaf59c
      [14]
      J.W. Liu, J. Wu, C.M. Edwards, C.L. Berrie, D. Moore, Z.J. Chen, V.A. Maroni, M.P. Paranthaman, and A. Goyal, Triangular graphene grain growth on cube-textured Cu substrates, Adv. Funct. Mater., 21(2011), No. 20, p. 3868. doi: 10.1002/adfm.201101305
      [15]
      H. Ago, I. Tanaka, C.M. Orofeo, M. Tsuji, and K.I. Ikeda, Patterned growth of graphene over epitaxial catalyst, Small, 6(2010), No. 11, p. 1226. doi: 10.1002/smll.200902405
      [16]
      H. Wang, G.Z. Wang, P.F. Bao, S.L. Yang, W. Zhu, X. Xie, and W.J. Zhang, Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation, J. Am. Chem. Soc., 134(2012), No. 8, p. 3627. doi: 10.1021/ja2105976
      [17]
      X.S. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B.Y. Han, M. Borysiak, W.W. Cai, A. Velamakanni, Y.W. Zhu, L.F. Fu, E.M. Vogel, E. Voelkl, L. Colombo, and R.S. Ruoff, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett., 10(2010), No. 11, p. 4328. doi: 10.1021/nl101629g
      [18]
      J.M. Wofford, S. Nie, K.F. McCarty, N.C. Bartelt, and O.D. Dubon, Graphene islands on Cu foils: The interplay between shape, orientation, and defects, Nano Lett., 10(2010), No. 12, p. 4890. doi: 10.1021/nl102788f
      [19]
      X.S. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, and R.S. Ruoff, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, J. Am. Chem. Soc., 133(2011), No. 9, p. 2816. doi: 10.1021/ja109793s
      [20]
      A. George, S. Mathew, R. van Gastel, M. Nijland, K. Gopinadhan, P. Brinks, T. Venkatesan, and J.E. ten Elshof, Large area resist-free soft lithographic patterning of graphene, Small, 9(2013), No. 5, p. 711. doi: 10.1002/smll.201201889
      [21]
      M. Pan, C. Wang, H.F. Li, N. Xie, P. Wu, X.D. Wang, Z.L. Zeng, S.G. Deng, and G.P. Dai, Growth of U-shaped graphene domains on copper foil by chemical vapor deposition, Materials, 12(2019), No. 12, art. No. 1887. doi: 10.3390/ma12121887
      [22]
      X. Xin, Z.Y. Fei, T. Ma, L. Chen, M.L. Chen, C. Xu, X.T. Qian, D.M. Sun, X.L. Ma, H.M. Cheng, and W.C. Ren, Circular graphene platelets with grain size and orientation gradients grown by chemical vapor deposition, Adv. Mater., 29(2017), No. 16, art. No. 1605451. doi: 10.1002/adma.201605451
      [23]
      D.C. Geng, B. Wu, Y.L. Guo, B.R. Luo, Y.Z. Xue, J.Y. Chen, G. Yu, and Y.Q. Liu, Fractal etching of graphene, J. Am. Chem. Soc., 135(2013), No. 17, p. 6431. doi: 10.1021/ja402224h
      [24]
      B.R. Luo, S. Yang, A.H. Yuan, B. Zhang, D.J. Li, P. Bøggild, and T.J. Booth, Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure, Nanotechnology, 31(2020), No. 48, art. No. 485603. doi: 10.1088/1361-6528/abb26d
      [25]
      W.Z. He, D.C. Geng, and Z.P. Xu, Pattern evolution characterizes the mechanism and efficiency of CVD graphene growth, Carbon, 141(2019), p. 316. doi: 10.1016/j.carbon.2018.09.046
      [26]
      T.R. Nanayakkara, U.K. Wijewardena, S.M. Withanage, A. Kriisa, R.L. Samaraweera, and R.G. Mani, Strain relaxation in different shapes of single crystal graphene grown by chemical vapor deposition on copper, Carbon, 168(2020), p. 684. doi: 10.1016/j.carbon.2020.07.025
      [27]
      Z.L. Chen, Y. Qi, X.D. Chen, Y.F. Zhang, and Z.F. Liu, Direct CVD growth of graphene on traditional glass: Methods and mechanisms, Adv. Mater., 31(2019), No. 9, art. No. 1803639. doi: 10.1002/adma.201803639
      [28]
      T.R. Wu, G.Q. Ding, H.L. Shen, H.M. Wang, L. Sun, D. Jiang, X.M. Xie, and M.H. Jiang, Triggering the continuous growth of graphene toward millimeter-sized grains, Adv. Funct. Mater., 23(2013), No. 2, p. 198. doi: 10.1002/adfm.201201577
      [29]
      B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179. doi: 10.1007/s12613-020-2031-2
      [30]
      I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, ACS Nano, 5(2011), No. 7, p. 6069. doi: 10.1021/nn201978y
      [31]
      P. Zhao, Y. Cheng, D.C. Zhao, K. Yin, X.W. Zhang, M. Song, S.Q. Yin, Y.N. Song, P. Wang, M. Wang, Y. Xia, and H.T. Wang, The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals, Nanoscale, 8(2016), No. 14, p. 7646. doi: 10.1039/C6NR00241B
      [32]
      Y.G. Shi, Y. Hao, D. Wang, J.C. Zhang, P. Zhang, X.F. Shi, D. Han, Z. Chai, and J.D. Yan, Effects of the flow rate of hydrogen on the growth of graphene, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 102. doi: 10.1007/s12613-015-1049-3
      [33]
      T.X. Chen, Y.Q. Zhou, Y.W. Sheng, X.C. Wang, S. Zhou, and J.H. Warner, Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene, ACS Appl. Mater. Interfaces, 10(2018), No. 8, p. 7304. doi: 10.1021/acsami.7b14860
      [34]
      S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(111) substrate, J. Phys.: Condens. Matter, 32(2020), No. 15, art. No. 155401. doi: 10.1088/1361-648X/ab62bf
      [35]
      Q.F. Liu, Y.P. Gong, J.S. Wilt, R. Sakidja, and J. Wu, Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process, Carbon, 93(2015), p. 199. doi: 10.1016/j.carbon.2015.05.063
      [36]
      Z.K. Qi, H.H. Shi, M.X. Zhao, H.C. Jin, S. Jin, X.H. Kong, R.S. Ruoff, S.Y. Qin, J.M. Xue, and H.X. Ji, Chemical vapor deposition growth of bernal-stacked bilayer graphene by edge-selective etching with H2O, Chem. Mater., 30(2018), No. 21, p. 7852. doi: 10.1021/acs.chemmater.8b03393
      [37]
      M.X. Liu, Y.F. Zhang, Y.B. Chen, Y.B. Gao, T. Gao, D.L. Ma, Q.Q. Ji, Y. Zhang, C. Li, and Z.F. Liu, Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process, ACS Nano, 6(2012), No. 12, p. 10581. doi: 10.1021/nn3047154
      [38]
      W. Yang, G.R. Chen, Z.W. Shi, C.C. Liu, L.C. Zhang, G.B. Xie, M. Cheng, D.M. Wang, R. Yang, D.X. Shi, K. Watanabe, T. Taniguchi, Y.G. Yao, Y.B. Zhang, and G.Y. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12(2013), No. 9, p. 792. doi: 10.1038/nmat3695
      [39]
      V.L. Nguyen, B.G. Shin, D.L. Duong, S.T. Kim, D. Perello, Y.J. Lim, Q.H. Yuan, F. Ding, H.Y. Jeong, H.S. Shin, S.M. Lee, S.H. Chae, Q.A. Vu, S.H. Lee, and Y.H. Lee, Seamless stitching of graphene domains on polished copper (111) foil, Adv. Mater., 27(2015), No. 8, p. 1376. doi: 10.1002/adma.201404541
      [40]
      B.R. Luo, B.Y. Chen, L. Meng, D.C. Geng, H.T. Liu, J. Xu, Z.Y. Zhang, H.T. Zhang, L.M. Peng, L. He, W.P. Hu, Y.Q. Liu, and G. Yu, Layer-stacking growth and electrical transport of hierarchical graphene architectures, Adv. Mater., 26(2014), No. 20, p. 3218. doi: 10.1002/adma.201305627

    Catalog


    • /

      返回文章
      返回