留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2525
  • HTML全文浏览量:  603
  • PDF下载量:  165
  • 被引次数: 0
Farai Michael Nyahuma, Liuting Zhang, Mengchen Song, Xiong Lu, Beibei Xiao, Jiaguang Zheng, and Fuying Wu, Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1788-1797. https://doi.org/10.1007/s12613-021-2303-5
Cite this article as:
Farai Michael Nyahuma, Liuting Zhang, Mengchen Song, Xiong Lu, Beibei Xiao, Jiaguang Zheng, and Fuying Wu, Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1788-1797. https://doi.org/10.1007/s12613-021-2303-5
引用本文 PDF XML SpringerLink
研究论文

Nb纳米催化剂改善氢化镁的优异储氢性能

文章亮点

  • (1) 本文通过表面活性剂辅助球磨技术(SABM)成功制备了Nb二维纳米片。
  • (2) Nb纳米片有效降低了MgH2的放氢活化能和吸氢活化能,且复合体系20次循环后仍保持初始容量的89.2%。
  • (3) 文章探究了Nb在吸放氢过程中的结构演变,发现NbH是提高MgH2储氢性能的活性催化单元,并且在球磨和脱氢状态下保持稳定。
  • 氢能,一种高效的可再生能源,其大规模应用是实现碳达峰碳中和目标的重要途径。作为最具潜力的固体储氢材料之一,氢化镁(MgH2)具有储氢量高(7.6wt%)、可逆性好等优点而备受关注,但其仍存在热力学性能稳定和动力学性能缓慢的瓶颈问题。本文探讨了通过表面活性剂辅助球磨技术(SABM)制备的Nb纳米催化剂对MgH2储氢性能的优异改性效果。通过比较不同MgH2ywt%Nb(y = 0, 3, 5, 7, 9)复合材料的起始放氢温度、放氢容量和反应速率,确定了最佳的催化剂掺杂浓度。MgH2–5wt%Nb复合材料在186.7℃开始释放氢气,在脱氢过程中共释放了7.0wt%的氢气。此外,完全放氢的样品在100℃下30分钟内能吸收4.0wt%的氢气。循环测试结果显示,MgH2–5wt%Nb在20次循环后可以保持6.3wt%的H2容量(89.2%)。在MgH2中掺入Nb后,脱氢和加氢活化能值分别从140.51±4.74和70.67±2.07 kJ·mol−1降至90.04±2.83和53.46±3.33 kJ·mol−1。显微结构分析证明均匀分布的NbH作为活性催化单元,提高了MgH2的储氢性能。
  • Research Article

    Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst

    + Author Affiliations
    • The study explores the excellent modification effect of Nb nanocatalyst prepared via surfactant assisted ball milling technique (SABM) on the hydrogen storage properties of MgH2. Optimal catalyst doping concentration was determined by comparing onset decomposition temperature, released hydrogen capacity, and reaction rate for different MgH2ywt%Nb (y = 0, 3, 5, 7, 9) composites. The MgH2–5wt%Nb composite started releasing hydrogen at 186.7°C and a total of 7.0wt% hydrogen was released in the dehydrogenation process. In addition, 5wt% Nb doped MgH2 also managed to release 4.2wt% H2 within 14 min at 250°C and had the ability to absorb 4.0wt% hydrogen in 30 min at 100°C. Cycling tests revealed that MgH2–5wt%Nb could retain 6.3wt% H2 storage capacity (89.2%) after 20 cycles. Dehydrogenation and hydrogenation activation energy values were decreased from 140.51±4.74 and 70.67±2.07 kJ·mol−1 to 90.04±2.83 and 53.46±3.33 kJ·mol−1 after doping MgH2 with Nb, respectively. Microstructure analysis proved that homogeneously distributed NbH acted as active catalytic unit for improving the hydrogen storage performance of MgH2. These results indicate SABM can be considered as an option to develop other nanocatalysts for energy related areas.
    • loading
    • [1]
      L.Z. Ouyang, K. Chen, J. Jiang, X.S. Yang, and M. Zhu, Hydrogen storage in light-metal based systems: A review, J. Alloys Compd., 829(2020), art. No. 154597. doi: 10.1016/j.jallcom.2020.154597
      [2]
      J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072. doi: 10.1016/j.ijhydene.2019.04.068
      [3]
      S.U. Rather, Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review, Int. J. Hydrogen Energy, 45(2020), No. 7, p. 4653. doi: 10.1016/j.ijhydene.2019.12.055
      [4]
      G. Barkhordarian, T. Klassen, and R. Bormann, Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction, J. Phys. Chem. B, 110(2006), No. 22, p. 11020. doi: 10.1021/jp0541563
      [5]
      N.A.A. Rusman and M. Dahari, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy, 41(2016), No. 28, p. 12108. doi: 10.1016/j.ijhydene.2016.05.244
      [6]
      M.C. Song, L.T. Zhang, J.G. Zheng, Z.D. Yu, and S.N. Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1464. doi: 10.1007/s12613-021-2393-0
      [7]
      Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [8]
      X.S. Liu, H.Z. Liu, N. Qiu, Y.B. Zhang, G.Y. Zhao, L. Xu, Z.Q. Lan, and J. Guo, Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials, Rare Met., 40(2021), No. 4, p. 1003. doi: 10.1007/s12598-020-01425-1
      [9]
      L.T. Zhang, Z. Sun, Z.L. Cai, N.H. Yan, X. Lu, X.Q. Zhu, and L.X. Chen, Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes, Appl. Surf. Sci., 504(2020), art. No. 144465. doi: 10.1016/j.apsusc.2019.144465
      [10]
      M. Chen, X.Z. Xiao, M. Zhang, M.J. Liu, X. Huang, J.G. Zheng, Y.W. Zhang, L.J. Jiang, and L.X. Chen, Excellent synergistic catalytic mechanism of in situ formed nanosized Mg2Ni and multiple valence titanium for improved hydrogen desorption properties of magnesium hydride, Int. J. Hydrogen Energy, 44(2019), No. 3, p. 1750. doi: 10.1016/j.ijhydene.2018.11.118
      [11]
      C.G. Lang, L.Z. Ouyang, L.L. Yang, L.Y. Dai, D.F. Wu, H.Y. Shao, and M. Zhu, Enhanced hydrogen storage kinetics in Mg@FLG composite synthesized by plasma assisted milling, Int. J. Hydrogen Energy, 43(2018), No. 36, p. 17346. doi: 10.1016/j.ijhydene.2018.07.149
      [12]
      H.C. Zhong, Y.S. Huang, Z.Y. du, H.J. Lin, X.J. Lu, C.Y. Cao, J.H. Chen, and L.Y. Dai, Enhanced hydrogen Ab/De-sorption of Mg(Zn) solid solution alloy catalyzed by YH2/Y2O3 nanocomposite, Int. J. Hydrogen Energy, 45(2020), No. 51, p. 27404. doi: 10.1016/j.ijhydene.2020.07.021
      [13]
      J.J. Lei and Q.G. Zhang, Microstructure and hydrogen storage properties of melt-spun Mg91Y3Al6 alloy, ChemistrySelect, 5(2020), No. 36, p. 11403. doi: 10.1002/slct.202003099
      [14]
      L.T. Zhang, N.H. Yan, Z.D. Yao, Z. Sun, X. Lu, F.M. Nyahuma, R.H. Zhu, G.P. Tu, and L.X. Chen, Remarkably improved hydrogen storage properties of carbon layers covered nanocrystalline Mg with certain air stability, Int. J. Hydrogen Energy, 45(2020), No. 52, p. 28134. doi: 10.1016/j.ijhydene.2020.03.170
      [15]
      W. Liu and K.F. Aguey-Zinsou, Synthesis of highly dispersed nanosized LaNi5 on carbon: Revisiting particle size effects on hydrogen storage properties, Int. J. Hydrogen Energy, 41(2016), No. 32, p. 14429. doi: 10.1016/j.ijhydene.2016.02.024
      [16]
      M. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee, and M.S. Yahya, The hydrogen storage properties and catalytic mechanism of the CuFe2O4-doped MgH2 composite system, Int. J. Hydrogen Energy, 44(2019), No. 1, p. 318. doi: 10.1016/j.ijhydene.2018.04.191
      [17]
      B.A. T, M.Z. Luis, and M. Marcos, Differences in the heterogeneous nature of hydriding/dehydriding kinetics of MgH2–TiH2 nanocomposites, Int. J. Hydrogen Energy, 45(2020), No. 51, p. 27421. doi: 10.1016/j.ijhydene.2020.07.042
      [18]
      J. Zhang, L. He, Y. Yao, X.J. Zhou, L.P. Yu, X.Z. Lu, and D.W. Zhou, Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renew. Energy, 154(2020), p. 1229. doi: 10.1016/j.renene.2020.03.089
      [19]
      M. Ismail, Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, 46(2021), No. 12, p. 8621. doi: 10.1016/j.ijhydene.2020.12.068
      [20]
      M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, and N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8(2020), No. 3, p. 832. doi: 10.1016/j.jma.2020.04.002
      [21]
      J. Zhang, S. Yan, and H. Qu, Recent progress in magnesium hydride modified through catalysis and nanoconfinement, Int. J. Hydrogen Energy, 43(2018), No. 3, p. 1545. doi: 10.1016/j.ijhydene.2017.11.135
      [22]
      S. Zhang, A.F. Gross, S.L. Van Atta, M. Lopez, P. Liu, C.C. Ahn, J.J. Vajo, and C.M. Jensen, The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold, Nanotechnology, 20(2009), No. 20, p. 204027. doi: 10.1088/0957-4484/20/20/204027
      [23]
      Y. Wang and Y.J. Wang, Recent advances in additive-enhanced magnesium hydride for hydrogen storage, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 41. doi: 10.1016/j.pnsc.2016.12.016
      [24]
      D. Pukazhselvan, N. Nasani, T. Yang, I. Bdikin, A.V. Kovalevsky, and D.P. Fagg, Dehydrogenation properties of magnesium hydride loaded with Fe, Fe–C, and Fe–Mg additives, ChemPhysChem, 18(2017), No. 3, p. 287. doi: 10.1002/cphc.201601078
      [25]
      Q. Li, K.D. Xu, K. Chou, X.G. Lu, and Q. Lin, Kinetics of hydrogen absorption and desorption of a mechanically milled MgH2+5at%V nanocomposite, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 13(2006), No. 4, p. 359.
      [26]
      Y. Wang, Q.Y. Zhang, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2, J. Alloys Compd., 645(2015), p. S509. doi: 10.1016/j.jallcom.2014.12.071
      [27]
      H. Gasan, O.N. Celik, N. Aydinbeyli, and Y.M. Yaman, Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride, Int. J. Hydrogen Energy, 37(2012), No. 2, p. 1912. doi: 10.1016/j.ijhydene.2011.05.086
      [28]
      T.K. Nielsen and T.R. Jensen, MgH2–Nb2O5 investigated by in situ synchrotron X-ray diffraction, Int. J. Hydrogen Energy, 37(2012), No. 18, p. 13409. doi: 10.1016/j.ijhydene.2012.06.082
      [29]
      R. Floriano, S. Deledda, B.C. Hauback, D.R. Leiva, and W.J. Botta, Iron and niobium based additives in magnesium hydride: Microstructure and hydrogen storage properties, Int. J. Hydrogen Energy, 42(2017), No. 10, p. 6810. doi: 10.1016/j.ijhydene.2016.11.117
      [30]
      W. Zhu, S. Panda, C. Lu, Z.W. Ma, D. Khan, J.J. Dong, F.Z. Sun, H. Xu, Q.Y. Zhang, and J.X. Zou, Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2, ACS Appl. Mater. Interfaces, 12(2020), No. 45, p. 50333. doi: 10.1021/acsami.0c12767
      [31]
      J. Chen, G. Xia, Z. Guo, Z. Huang, H. Liu, and X. Yu, Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2, J. Mater. Chem. A, 3(2015), No. 31, p. 15843. doi: 10.1039/C5TA03721B
      [32]
      S.K. Pal, L. Schultz, and O. Gutfleisch, Effect of milling parameters on SmCo5 nanoflakes prepared by surfactant-assisted high energy ball milling, J. Appl. Phys., 113(2013), No. 1, art. No. 013913. doi: 10.1063/1.4773323
      [33]
      X. Tang, X. Chen, R.J. Chen, and A.R. Yan, Polycrystalline Nd2Fe14B/α-Fe nanocomposite flakes with a sub-micro/nanometre thickness prepared by surfactant-assisted high-energy ball milling, J. Alloys Compd., 644(2015), p. 562. doi: 10.1016/j.jallcom.2015.05.079
      [34]
      L.T. Zhang, L. Ji, Z.D. Yao, N.H. Yan, Z. Sun, X.L. Yang, X.Q. Zhu, S.L. Hu, and L.X. Chen, Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrogen Energy, 44(2019), No. 39, p. 21955. doi: 10.1016/j.ijhydene.2019.06.065
      [35]
      B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 92(1990), No. 1, p. 508. doi: 10.1063/1.458452
      [36]
      B.B. Xiao, X.B. Jiang, and Q. Jiang, Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst, Phys. Chem. Chem. Phys., 18(2016), No. 21, p. 14234. doi: 10.1039/C6CP01066K
      [37]
      L.T. Zhang, Z.L. Cai, Z.D. Yao, L. Ji, Z. Sun, N.H. Yan, B.Y. Zhang, B.B. Xiao, J. Du, X.Q. Zhu, and L.X. Chen, A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626. doi: 10.1039/C9TA00120D
      [38]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [39]
      B. Delley, Hardness conserving semilocal pseudopotentials, Phys. Rev. B, 66(2002), No. 15, art. No. 155125. doi: 10.1103/PhysRevB.66.155125
      [40]
      L.T. Zhang, X. Lu, Z. Sun, N.H. Yan, H.J. Yu, Z.Y. Lu, and X.Q. Zhu, Superior catalytic effect of facile synthesized LaNi4.5Mn0.5 submicro-particles on the hydrogen storage properties of MgH2, J. Alloys Compd., 844(2020), art. No. 156069. doi: 10.1016/j.jallcom.2020.156069
      [41]
      E. Xu, H. Li, X.M. You, C. Bu, L.F. Zhang, Q. Wang, and Z.G. Zhao, Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057. doi: 10.1016/j.ijhydene.2016.12.102
      [42]
      J.X. Li, S. Wang, Y.L. Du, and W.H. Liao, Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2, Int. J. Hydrogen Energy, 44(2019), No. 13, p. 6787. doi: 10.1016/j.ijhydene.2019.01.189
      [43]
      N.A. Ali, N.H. Idris, M.F.M. Din, M.S. Yahya, and M. Ismail, Nanoflakes MgNiO2 synthesised via a simple hydrothermal method and its catalytic roles on the hydrogen sorption performance of MgH2, J. Alloys Compd., 796(2019), p. 279. doi: 10.1016/j.jallcom.2019.05.048
      [44]
      N.A. Sazelee, N.H. Idris, M.F.M. Din, M.S. Yahya, N.A. Ali, and M. Ismail, LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results Phys., 16(2020), art. No. 102844. doi: 10.1016/j.rinp.2019.102844
      [45]
      M. Zhang, X.Z. Xiao, Z.M. Hang, M. Chen, X.C. Wang, N. Zhang, and L.X. Chen, Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride, Int. J. Hydrogen Energy, 46(2021), No. 1, p. 814. doi: 10.1016/j.ijhydene.2020.09.173
      [46]
      L. Dan, L. Hu, H. Wang, and M. Zhu, Excellent catalysis of MoO3 on the hydrogen sorption of MgH2, Int. J. Hydrogen Energy, 44(2019), No. 55, p. 29249. doi: 10.1016/j.ijhydene.2019.01.285
      [47]
      M.H. Abdul Rahman, M.A. Shamsudin, A. Klimkowicz, S. Uematsu, and A. Takasaki, Effects of KNbO3 catalyst on hydrogen sorption kinetics of MgH2, Int. J. Hydrogen Energy, 44(2019), No. 55, p. 29196. doi: 10.1016/j.ijhydene.2019.02.186
      [48]
      N.H. Idris, N.S. Mustafa, and M. Ismail, MnFe2O4 nanopowder synthesised via a simple hydrothermal method for promoting hydrogen sorption from MgH2, Int. J. Hydrogen Energy, 42(2017), No. 33, p. 21114. doi: 10.1016/j.ijhydene.2017.07.006
      [49]
      S. Singh, A. Bhatnagar, V. Shukla, A.K. Vishwakarma, P.K. Soni, S.K. Verma, M.A. Shaz, A.S.K. Sinha, and O.N. Srivastava, Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2, Int. J. Hydrogen Energy, 45(2020), No. 1, p. 774. doi: 10.1016/j.ijhydene.2019.10.204
      [50]
      X. Zhang, Z.H. Leng, M.X. Gao, J.J. Hu, F. Du, J.H. Yao, H.G. Pan, and Y.F. Liu, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J. Power Sources, 398(2018), p. 183. doi: 10.1016/j.jpowsour.2018.07.072
      [51]
      Y. Luo, P. Wang, L.P. Ma, and H.M. Cheng, Enhanced hydrogen storage properties of MgH2 co-catalyzed with NbF5 and single-walled carbon nanotubes, Scr. Mater., 56(2007), No. 9, p. 765. doi: 10.1016/j.scriptamat.2007.01.016
      [52]
      J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomden, Handbook of X-ray Photoelectron Spectoscropy, Perkin-Elmer Corporation, Eden Prairie, 1992.
      [53]
      G.E. McGuire, G.K. Schweitzer, and T.A. Carlson, Study of core electron binding energies in some group IIIA, VB, and VIB compounds, Inorg. Chem., 12(1973), No. 10, p. 2450. doi: 10.1021/ic50128a045

    Catalog


    • /

      返回文章
      返回