留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 10
Oct.  2021

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1185
  • HTML全文浏览量:  533
  • PDF下载量:  50
  • 被引次数: 0
Xing-hua Qin, Ye-hong Du, Peng-chao Zhang, Xin-yu Wang, Qiong-qiong Lu, Ai-kai Yang, and Jun-cai Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1684-1692. https://doi.org/10.1007/s12613-021-2312-4
Cite this article as:
Xing-hua Qin, Ye-hong Du, Peng-chao Zhang, Xin-yu Wang, Qiong-qiong Lu, Ai-kai Yang, and Jun-cai Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1684-1692. https://doi.org/10.1007/s12613-021-2312-4
引用本文 PDF XML SpringerLink
研究论文

层状钒酸钡纳米带正极在高性能锌离子电池中应用

  • Research Article

    Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries

    + Author Affiliations
    • Aqueous zinc-ion batteries (ZIBs) are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost, environmental friendliness, and high operations safety. However, to develop high-performance cathode is still significant for practical application of ZIBs. Herein, Ba0.23V2O5·1.1H2O (BaVO) nanobelts were fabricated as cathode materials of ZIBs by a typical hydrothermal synthesis method. Benefiting from the increased interlayer distance of 1.31 nm by Ba2+ and H2O pre-intercalated, the obtained BaVO nanobelts showed an excellent initial discharge capacity of 378 mAh·g−1 at 0.1 A·g−1, a great rate performance (e.g., 172 mAh·g−1 at 5 A·g−1), and a superior capacity retention (93% after 2000 cycles at 5 A·g−1).

    • loading
    • [1]
      N. Nitta, F.X. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(2015), No. 5, p. 252. doi: 10.1016/j.mattod.2014.10.040
      [2]
      L.Y. Shao, S.G. Wang, F.D. Wu, X.Y. Shi, Z.P. Sun, and Y.X. Tang, Pampas grass-inspired FeOOH nanobelts as high performance anodes for sodium ion batteries, J. Energy Chem., 54(2021), p. 138. doi: 10.1016/j.jechem.2020.05.051
      [3]
      J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
      [4]
      X.Y. Wang, L.W. Ma, P.C. Zhang, H.Y. Wang, S. Li, S.J. Ji, Z.S. Wen, and J.C. Sun, Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability, Appl. Surf. Sci., 502(2020), art. No. 144207. doi: 10.1016/j.apsusc.2019.144207
      [5]
      M.S. Zhu, J.P. Hu, Q.Q. Lu, H.Y. Dong, D.D. Karnaushenko, C. Becker, D. Karnaushenko, Y. Li, H.M. Tang, Z. Qu, J. Ge, and O.G. Schmidt, A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery, Adv. Mater., 33(2021), No. 8, art. No. 2007497. doi: 10.1002/adma.202007497
      [6]
      S. Liu, G.L. Pan, G.R. Li, and X.P. Gao, Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries, J. Mater. Chem. A, 3(2015), No. 3, p. 959. doi: 10.1039/C4TA04644G
      [7]
      P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu, K.G. Gallagher, K.A. Persson, and G. Ceder, Odyssey of multivalent cathode materials: Open questions and future challenges, Chem. Rev., 117(2017), No. 5, p. 4287. doi: 10.1021/acs.chemrev.6b00614
      [8]
      T. Hu, Z.Y. Feng, Y.F. Zhang, Y.Y. Liu, J.J. Sun, J.Q. Zheng, H.M. Jiang, P. Wang, X.Y. Dong, and C.G. Meng, “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries, Inorg. Chem. Front., 8(2021), No. 1, p. 79. doi: 10.1039/D0QI00954G
      [9]
      Y.H. Du, X.Y. Wang, and J.C. Sun, Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries, Nano Res., 14(2021), No. 3, p. 754. doi: 10.1007/s12274-020-3109-x
      [10]
      X.Y. Wang, X.H. Qin, Q.Q. Lu, M.M. Han, A. Omar, and D. Mikhailova, Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage, Chin. J. Chem. Eng., 28(2020), No. 8, p. 2214. doi: 10.1016/j.cjche.2020.05.015
      [11]
      Y. Dong, M. Jia, Y.Y. Wang, J.Z. Xu, Y.C. Liu, L.F. Jiao, and N. Zhang, Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO4 electrolyte with proton and zinc ion co-intercalation, ACS Appl. Energy Mater., 3(2020), No. 11, p. 11183. doi: 10.1021/acsaem.0c02126
      [12]
      N. Zhang, Y. Dong, Y.Y. Wang, Y.X. Wang, J.J. Li, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Ultrafast rechargeable zinc battery based on high-voltage graphite cathode and stable nonaqueous electrolyte, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 32978. doi: 10.1021/acsami.9b10399
      [13]
      N. Zhang, X.Y. Chen, M. Yu, Z.Q. Niu, F.Y. Cheng, and J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49(2020), No. 13, p. 4203. doi: 10.1039/C9CS00349E
      [14]
      L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu, and C. Meng, Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries, Mater. Today Energy, 18(2020), art. No. 100509. doi: 10.1016/j.mtener.2020.100509
      [15]
      S.D. Liu, L. Kang, J.M. Kim, Y.T. Chun, J. Zhang, and S.C. Jun, Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries, Adv. Energy Mater., 10(2020), No. 25, art. No. 2000477. doi: 10.1002/aenm.202000477
      [16]
      Y.R. Wang, C.X. Wang, Z.G. Ni, Y.M. Gu, B.L. Wang, Z.W. Guo, Z. Wang, D. Bin, J. Ma, and Y.G. Wang, Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries, Adv. Mater., 32(2020), No. 16, art. No. 2000338. doi: 10.1002/adma.202000338
      [17]
      G. Zampardi and F. La Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives, Curr. Opin. Electrochem., 21(2020), p. 84. doi: 10.1016/j.coelec.2020.01.014
      [18]
      M.Q. Liu, Q.H. Zhao, H. Liu, J.L. Yang, X. Chen, L.Y. Yang, Y.H. Cui, W.Y. Huang, W.G. Zhao, A.Y. Song, Y.T. Wang, S.X. Ding, Y.L. Song, G.Y. Qian, H.B. Chen, and F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, Nano Energy, 64(2019), art. No. 103942. doi: 10.1016/j.nanoen.2019.103942
      [19]
      Y.Y. Liu, Z.H. Pan, D. Tian, T. Hu, H.M. Jiang, J. Yang, J.J. Sun, J.Q. Zheng, C.G. Meng, and Y.F. Zhang, Employing “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125842. doi: 10.1016/j.cej.2020.125842
      [20]
      Y.F. Zhang, H.M. Jiang, L. Xu, Z.M. Gao, and C.G. Meng, Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries, ACS Appl. Energy Mater., 2(2019), No. 11, p. 7861. doi: 10.1021/acsaem.9b01299
      [21]
      D.P. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, and L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1(2016), art. No. 16119. doi: 10.1038/nenergy.2016.119
      [22]
      F.W. Ming, H.F. Liang, Y.J. Lei, S. Kandambeth, M. Eddaoudi, and H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries, ACS Energy Lett., 3(2018), No. 10, p. 2602. doi: 10.1021/acsenergylett.8b01423
      [23]
      P. He, G.B. Zhang, X.B. Liao, M.Y. Yan, X. Xu, Q.Y. An, J. Liu, and L.Q. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702463. doi: 10.1002/aenm.201702463
      [24]
      W.W. Zhang, C. Tang, B.X. Lan, L.N. Chen, W. Tang, C.L. Zuo, S.J. Dong, Q.Y. An, and P. Luo, K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance, J. Alloys Compd., 819(2020), art. No. 152971. doi: 10.1016/j.jallcom.2019.152971
      [25]
      H.B. Geng, M. Cheng, B. Wang, Y. Yang, Y.F. Zhang, and C.C. Li, Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907684. doi: 10.1002/adfm.201907684
      [26]
      J.Q. Zheng, C.F. Liu, M. Tian, X.X. Jia, E.P. Jahrman, G.T. Seidler, S.Q. Zhang, Y.Y. Liu, Y.F. Zhang, C.G. Meng, and G.Z. Cao, Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate, Nano Energy, 70(2020), art. No. 104519. doi: 10.1016/j.nanoen.2020.104519
      [27]
      J.W. Li, K. McColl, X.K. Lu, S. Sathasivam, H.B. Dong, L.Q. Kang, Z.N. Li, S.Y. Zhao, A.G. Kafizas, R. Wang, D.J.L. Brett, P.R. Shearing, F. Corà, G.J. He, C.J. Carmalt, and I.P. Parkin, Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries, Adv. Energy Mater., 10(2020), No. 15, art. No. 2000058. doi: 10.1002/aenm.202000058
      [28]
      Y.F. Zhang, J.Q. Zheng, Y.F. Zhao, T. Hu, Z.M. Gao, and C.G. Meng, Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor, Appl. Surf. Sci., 377(2016), p. 385. doi: 10.1016/j.apsusc.2016.03.180
      [29]
      Y.H. Du, X.Y. Wang, J.Z. Man, and J.C. Sun, A novel organic–inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries, Mater. Lett., 272(2020), art. No. 127813. doi: 10.1016/j.matlet.2020.127813
      [30]
      X.H. Qin, X.Y. Wang, J.C. Sun, Q.Q. Lu, A. Omar, and D. Mikhailova, Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous zinc-ion batteries, Front. Energy Res., 8(2020), art. No. 199. doi: 10.3389/fenrg.2020.00199
      [31]
      N. Zhang, Y. Dong, M. Jia, X. Bian, Y.Y. Wang, M.D. Qiu, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life, ACS Energy Lett., 3(2018), No. 6, p. 1366. doi: 10.1021/acsenergylett.8b00565
      [32]
      Y. Xu, X.S. Han, L. Zheng, W.S. Yan, and Y. Xie, Pillar effect on cyclability enhancement for aqueous lithium ion batteries: A new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires, J. Mater. Chem., 21(2011), No. 38, p. 14466. doi: 10.1039/c1jm11910a
      [33]
      X. Wang, B.J. Xi, X.J. Ma, Z.Y. Feng, Y.X. Jia, J.K. Feng, Y.T. Qian, and S.L. Xiong, Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate, Nano Lett., 20(2020), No. 4, p. 2899. doi: 10.1021/acs.nanolett.0c00732
      [34]
      F.J. Tang, W.J. Zhou, M.F. Chen, J.Z. Chen, and J.L. Xu, Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries, Electrochim. Acta, 328(2019), art. No. 135137. doi: 10.1016/j.electacta.2019.135137
      [35]
      T.Y. Wei, Q. Li, G.Z. Yang, and C.X. Wang, Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts, J. Mater. Chem. A, 6(2018), No. 41, p. 20402. doi: 10.1039/C8TA06626D
      [36]
      C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, and H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30(2018), No. 5, art. No. 1705580. doi: 10.1002/adma.201705580
      [37]
      G.Z. Yang, T.Y. Wei, and C.X. Wang, Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides, ACS Appl. Mater. Interfaces, 10(2018), No. 41, p. 35079. doi: 10.1021/acsami.8b10849
      [38]
      P. He, M.Y. Yan, G.B. Zhang, R.M. Sun, L.N. Chen, Q.Y. An, and L.Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode, Adv. Energy Mater., 7(2017), No. 11, art. No. 1601920. doi: 10.1002/aenm.201601920
      [39]
      G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, and Y.H. Huang, Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25(2016), p. 211. doi: 10.1016/j.nanoen.2016.04.051
      [40]
      B.X. Lan, Z. Peng, L.N. Chen, C. Tang, S.J. Dong, C. Chen, M. Zhou, C. Chen, Q.Y. An, and P. Luo, Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries, J. Alloys Compd., 787(2019), p. 9. doi: 10.1016/j.jallcom.2019.02.078
      [41]
      M.H. Alfaruqi, V. Mathew, J.J. Song, S. Kim, S. Islam, D.T. Pham, J. Jo, S. Kim, J.P. Baboo, Z.L. Xiu, K.S. Lee, Y.K. Sun, and J. Kim, Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode, Chem. Mater., 29(2017), No. 4, p. 1684. doi: 10.1021/acs.chemmater.6b05092
      [42]
      P. He, Y.L. Quan, X. Xu, M.Y. Yan, W. Yang, Q.Y. An, L. He, and L.Q. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 13(2017), No. 47, art. No. 1702551. doi: 10.1002/smll.201702551
      [43]
      X.W. Wu, Y.H. Li, Y.H. Xiang, Z.X. Liu, Z.Q. He, X.M. Wu, Y.J. Li, L.Z. Xiong, C.C. Li, and J. Chen, The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte, J. Power Sources, 336(2016), p. 35. doi: 10.1016/j.jpowsour.2016.10.053
      [44]
      Y.Q. Yang, Y. Tang, G.Z. Fang, L.T. Shan, J.S. Guo, W.Y. Zhang, C. Wang, L.B. Wang, J. Zhou, and S.Q. Liang, Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode, Energy Environ. Sci., 11(2018), No. 11, p. 3157. doi: 10.1039/C8EE01651H
      [45]
      N. Zhang, M. Jia, Y. Dong, Y.Y. Wang, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807331. doi: 10.1002/adfm.201807331
      [46]
      X.Y. Wang, L.W. Ma, and J.C. Sun, Vanadium pentoxide nanosheets in-situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 44, p. 41297. doi: 10.1021/acsami.9b13103
      [47]
      M.Y. Yan, P. He, Y. Chen, S.Y. Wang, Q.L. Wei, K.N. Zhao, X. Xu, Q.Y. An, Y. Shuang, Y.Y. Shao, K.T. Mueller, L.Q. Mai, J. Liu, and J.H. Yang, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725. doi: 10.1002/adma.201703725
      [48]
      L.Y. Shao, J.Z. Hong, S.G. Wang, F.D. Wu, F. Yang, X.Y. Shi, and Z.P. Sun, Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries, J. Power Sources, 491(2021), art. No. 229627. doi: 10.1016/j.jpowsour.2021.229627

    Catalog


    • /

      返回文章
      返回