留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1026
  • HTML全文浏览量:  486
  • PDF下载量:  36
  • 被引次数: 0
Jihong Zheng, Liangxin Zhu, Zhitao Shen, Fumin Li, Lanyu Ling, Huilin Li, and Chong Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 283-291. https://doi.org/10.1007/s12613-021-2316-0
Cite this article as:
Jihong Zheng, Liangxin Zhu, Zhitao Shen, Fumin Li, Lanyu Ling, Huilin Li, and Chong Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 283-291. https://doi.org/10.1007/s12613-021-2316-0
引用本文 PDF XML SpringerLink
研究论文

钙钛矿活性层添加剂CdS 和 Cd(SCN2H4)2Cl2对钙钛矿太阳能电池性能的影响

文章亮点

  • (1) 通过前驱液共混法在钙钛矿活性层中原位生成CdS:Cd(SCN2H4)2Cl2
  • (2) 研究了 CdS:Cd(SCN2H4)2Cl2对钙钛矿晶体薄膜光电性质的影响。
  • (3) 探究了 CdS:Cd(SCN2H4)2Cl2对钙钛矿电池性能的影响。
  • 制备高质量的钙钛矿薄膜对于高性能的钙钛矿太阳能电池非常重要。然而,钙钛矿晶体中的缺陷会影响钙钛矿太阳能电池的光电转化效率和稳定性。为了解决这个问题,本研究将CdS和络合物Cd(SCN2H4)2Cl2掺入到CH3NH3PbI3活性层中,并进一步分析了CdS和络合物Cd(SCN2H4)2Cl2的不同掺杂浓度对钙钛矿太阳能电池性能和稳定性的影响。结果表明,CdS和Cd(SCN2H4)2Cl2在CH3NH3PbI3中的适当的掺杂浓度可以提高钙钛矿太阳能电池的性能。研究结果发现,CdS和Cd(SCN2H4)2Cl2可以有效降低钙钛矿晶体中的缺陷,减少电池内部的电荷复合,促进电荷在TiO2和钙钛矿界面的分离和输运。同时,由于钙钛矿晶体中缺陷的减少和CdS:Cd(SCN2H4)2Cl2:CH3NH3PbI3体异质结薄膜质量的优化,钙钛矿太阳能电池的稳定性也明显提高。

  • Research Article

    Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells

    + Author Affiliations
    • An excellent organolead halide perovskite film is important for the good performance of perovskite solar cells (PSCs). However, defects in perovskite crystals can affect the photovoltaic properties and stability of solar cells. To solve this problem, this study incorporated a complex of CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. The effects of different doping concentrations of CdS and Cd(SCN2H4)2Cl2 on the performance and stability of PSCs were analyzed. Results showed that doping appropriate incorporation concentrations of CdS and Cd(SCN2H4)2Cl2 in CH3NH3PbI3 can improve the performance of the prepared solar cells. In specific, CdS and Cd(SCN2H4)2Cl2 can effectively passivate the defects in perovskite crystals, thereby suppressing the charge recombination in PSCs and promoting the charge extraction at the TiO2/perovskite interface. Due to the reduction of perovskite crystal defects and the enhancement of compactness of the CdS:Cd(SCN2H4)2Cl2:CH3NH3PbI3 composite film, the stability of PSCs is significantly improved.

    • loading
    • [1]
      W.J. Yin, J.H. Yang, J. Kang, Y.F. Yan, and S.H. Wei, Halide perovskite materials for solar cells: A theoretical review, J. Mater. Chem. A, 3(2015), No. 17, p. 8926. doi: 10.1039/C4TA05033A
      [2]
      C.B. Fei, B. Li, R. Zhang, H.Y. Fu, J.J. Tian, and G.Z. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film, Adv. Energy Mater., 7(2017), No. 9, art. No. 1602017. doi: 10.1002/aenm.201602017
      [3]
      X.X. Gao, W. Luo, Y. Zhang, R.Y. Hu, B. Zhang, A. Züttel, Y.Q. Feng, and M.K. Nazeeruddin, Stable and high-efficiency methylammonium-free perovskite solar cells, Adv. Mater., 32(2020), No. 9, art. No. 1905502. doi: 10.1002/adma.201905502
      [4]
      H.B. Lee, N. Kumar, M.M. Ovhal, Y.J. Kim, Y.M. Song, and J.W. Kang, Dopant-free, amorphous-crystalline heterophase SnO2 electron transport bilayer enables >20% efficiency in triple-cation perovskite solar cells, Adv. Funct. Mater., 30(2020), No. 24, art. No. 2001559. doi: 10.1002/adfm.202001559
      [5]
      Q. Lou, H.L. Li, Q.S. Huang, Z.T. Shen, F.M. Li, Q. Du, M.Q. Jin, and C. Chen, Multifunctional CNT:TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells, EcoMat, 3(2021), No. 3, art. No. e12099. doi: 10.1002/eom2.12099
      [6]
      C.Q. Ma and N.G. Park, A realistic methodology for 30% efficient perovskite solar cells, Chem, 6(2020), No. 6, p. 1254. doi: 10.1016/j.chempr.2020.04.013
      [7]
      H. Min, D.Y. Lee, J.Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, and S. Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature, 598(2021), No. 7881, p. 444. doi: 10.1038/s41586-021-03964-8
      [8]
      G.H. Ren, W.B. Han, Y.Y. Deng, W. Wu, Z.W. Li, J.X. Guo, H.C. Bao, C.Y. Liu, and W.B. Guo, Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: A review, J. Mater. Chem. A, 9(2021), No. 8, p. 4589. doi: 10.1039/D0TA11564A
      [9]
      A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
      [10]
      S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342(2013), No. 6156, p. 341. doi: 10.1126/science.1243982
      [11]
      J.L. Yang, K.M. Fransishyn, and T.L. Kelly, Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films, Chem. Mater., 28(2016), No. 20, p. 7344. doi: 10.1021/acs.chemmater.6b02744
      [12]
      Y. Zhao, Q.F. Ye, Z.M. Chu, F. Gao, X.W. Zhang, and J.B. You, Recent progress in high-efficiency planar-structure perovskite solar cells, Energy Environ. Mater., 2(2019), No. 2, p. 93. doi: 10.1002/eem2.12042
      [13]
      H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
      [14]
      H. Lu, W. Tian, B.K. Gu, Y.Y. Zhu, and L. Li, TiO2 electron transport bilayer for highly efficient planar perovskite solar cell, Small, 13(2017), No. 38, art. No. 1701535. doi: 10.1002/smll.201701535
      [15]
      F. Shahvaranfard, M. Altomare, Y. Hou, S. Hejazi, W. Meng, B. Osuagwu, N. Li, C.J. Brabec, and P. Schmuki, Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods, Adv. Funct. Mater., 30(2020), No. 10, art. No. 1909738. doi: 10.1002/adfm.201909738
      [16]
      J.S. Manser, M.I. Saidaminov, J.A. Christians, O.M. Bakr, and P.V. Kamat, Making and breaking of lead halide perovskites, Acc. Chem. Res., 49(2016), No. 2, p. 330. doi: 10.1021/acs.accounts.5b00455
      [17]
      G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, and H.J. Bolink, Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells, Adv. Mater., 27(2015), No. 11, p. 1837. doi: 10.1002/adma.201405372
      [18]
      W.J. Yin, T.T. Shi, and Y.F. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104(2014), No. 6, art. No. 063903. doi: 10.1063/1.4864778
      [19]
      H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Interface engineering of highly efficient perovskitesolar cells, Sci., 345(2014), No. 6196, p. 542. doi: 10.1126/science.1254050
      [20]
      W.X. Gong, H. Guo, H.Y. Zhang, J. Yang, H.Y. Chen, L.P. Wang, F. Hao, and X.B. Niu, Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells, J. Mater. Chem. C, 8(2020), No. 33, p. 11638. doi: 10.1039/D0TC00515K
      [21]
      Q. Lou, G. Lou, R.X. Peng, Z.P. Liu, W. Wang, M.X. Ji, C. Chen, X.L. Zhang, C. Liu, and Z.Y. Ge, Synergistic effect of lewis base polymers and graphene in enhancing the efficiency of perovskite solar cells, ACS Appl. Energy Mater., 4(2021), No. 4, p. 3928. doi: 10.1021/acsaem.1c00299
      [22]
      J.K. Wang, K. Datta, C.H.L. Weijtens, M.M. Wienk, and R.A.J. Janssen, Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 46, art. No. 1905883. doi: 10.1002/adfm.201905883
      [23]
      S. Sonmezoglu and S. Akin, Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells, Nano Energy, 76(2020), art. No. 105127. doi: 10.1016/j.nanoen.2020.105127
      [24]
      H.M. Yi, D. Wang, M.A. Mahmud, F. Haque, M.B. Upama, C. Xu, L.P. Duan, and A. Uddin, Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells, ACS Appl. Energy. Mater, 1(2018), No. 11, p. 6027. doi: 10.1021/acsaem.8b01076
      [25]
      J.J. Yan, Z.C. Lin, Q.B. Cai, X.N. Wen, and C. Mu, Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells, ACS Appl. Energy Mater, 3(2020), No. 4, p. 3504. doi: 10.1021/acsaem.0c00038
      [26]
      H.M. Yates, S.M.P. Meroni, D. Raptis, J.L. Hodgkinson, and T.M. Watson, Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells, J. Mater. Chem. C, 7(2019), No. 42, p. 13235. doi: 10.1039/C9TC03922H
      [27]
      C. Chen, Y. Zhai, F.M. Li, F.R. Tan, G.T. Yue, W.F. Zhang, and M.T. Wang, High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer, J. Power Sources, 341(2017), p. 396. doi: 10.1016/j.jpowsour.2016.12.027
      [28]
      M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, and V. Dalal, Defect density and dielectric constant in perovskite solar cells, Appl. Phys. Lett., 105(2014), No. 15, art. No. 153502. doi: 10.1063/1.4897329
      [29]
      M.X. Guo, F.M. Li, L.Y. Ling, and C. Chen, Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH3NH3PbI3: CdS perovskite solar cells, J. Mater. Chem. C, 5(2017), No. 46, p. 12112. doi: 10.1039/C7TC04377E
      [30]
      G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47(1993), No. 1, p. 558. doi: 10.1103/PhysRevB.47.558
      [31]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
      [32]
      . P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953.
      [33]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [34]
      S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27(2006), No. 15, p. 1787. doi: 10.1002/jcc.20495
      [35]
      K. Momma and F. Izumi, VESTA  3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44(2011), No. 6, p. 1272. doi: 10.1107/S0021889811038970
      [36]
      L.X. Zhu, C. Chen, F.M. Li, Z.T. Shen, Y.J. Weng, Q.S. Huang, and M.T. Wang, Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer, J. Mater. Chem. A, 7(2019), No. 3, p. 1124. doi: 10.1039/C8TA09933B
      [37]
      T.Y. Wang, B. Daiber, J.M. Frost, S.A. Mann, E.C. Garnett, A. Walsh, and B. Ehrler, Indirect to direct bandgap transition in methylammonium lead halide perovskite, Energy Environ. Sci., 10(2017), No. 2, p. 509. doi: 10.1039/C6EE03474H
      [38]
      N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites, ACS Nano, 8(2014), No. 10, p. 9815. doi: 10.1021/nn5036476
      [39]
      H.R. Tan, A. Jain, O. Voznyy, X.Z. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M.J. Yuan, B. Zhang, Y.C. Zhao, F.J. Fan, P.C. Li, L.N. Quan, Y.B. Zhao, Z.H. Lu, Z.Y. Yang, S. Hoogland, and E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Sci., 355(2017), No. 6326, p. 722. doi: 10.1126/science.aai9081
      [40]
      M.B. Johnston and L.M. Herz, Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies, Acc. Chem. Res., 49(2016), No. 1, p. 146. doi: 10.1021/acs.accounts.5b00411
      [41]
      G. Tumen-Ulzii, C.J. Qin, T. Matsushima, M.R. Leyden, U. Balijipalli, D. Klotz, and C. Adachi, Understanding the degradation of spiro-OMeTAD-based perovskite solar cells at high temperature, Sol. RRL, 4(2020), No. 10, art. No. 2000305. doi: 10.1002/solr.202000305
      [42]
      Y.Q. Yang, J.H. Wu, X.P. Liu, Q.Y. Guo, X.B. Wang, L. Liu, Y. Ding, S.Y. Dai, and J.Y. Lin, Dual functional doping of KMnO4 in spiro-OMeTAD for highly effective planar perovskite solar cells, ACS Appl. Energy Mater., 2(2019), No. 3, p. 2188. doi: 10.1021/acsaem.8b02219
      [43]
      J.A. Christians, R.C. Fung, and P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide, J. Am. Chem. Soc., 136(2014), No. 2, p. 758. doi: 10.1021/ja411014k
      [44]
      H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer, Nano Lett., 13(2013), No. 6, p. 2412. doi: 10.1021/nl400286w

    Catalog


    • /

      返回文章
      返回