留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  696
  • HTML全文浏览量:  274
  • PDF下载量:  40
  • 被引次数: 0
Xuchen Jin, Peihao Ye, Hongrui Ji, Zhuanxia Suo, Boxin Wei, Xuewen Li, and Wenbin Fang, Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2232-2240. https://doi.org/10.1007/s12613-021-2320-4
Cite this article as:
Xuchen Jin, Peihao Ye, Hongrui Ji, Zhuanxia Suo, Boxin Wei, Xuewen Li, and Wenbin Fang, Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2232-2240. https://doi.org/10.1007/s12613-021-2320-4
引用本文 PDF XML SpringerLink
研究论文

粉末冶金Ti–45Al–10Nb合金的高温抗氧化性能

  • 通讯作者:

    李学问    E-mail: lixuewen@hrbust.edu.cn

文章亮点

  • (1) 系统地研究了高温氧化过程中粉末冶金Ti–45Al–10Nb合金表面氧化组织的演变规律。
  • (2) 系统地研究了粉末冶金Ti–45Al–10Nb合金的高温抗氧化机理。
  • (3) 总结并提出了Nb能够提高TiAl基合金的高温抗氧化性的原因。
  • 通过粉末冶金法制备了化学成分为Ti–45Al–10Nb的高Nb含量的TiAl合金,并研究了其在850、900和950°C下的抗氧化性能。根据氧化皮形貌和微观结构演变分析,讨论了高温下的抗氧化机理。850°C和900°C的氧化皮结构相似,TiO2+Al2O3混合物覆盖在弥散分布TiO2+Nb2O5的基体层。在950℃时,氧化皮从外部到母体金属分为四层:疏松的TiO2+Al2O3层、致密的Al2O3层、致密的TiO2+Nb2O5层和弥散分布TiO2+Nb2O5的基体层。Nb层抑制了Ti原子的向外扩散,阻碍了TiO2的生长,同时促进形成连续的Al2O3保护层,使合金具有长期的高温抗氧化能力。
  • Research Article

    Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature

    + Author Affiliations
    • TiAl alloy with high Nb content, nominally Ti–45Al–10Nb, was prepared by powder metallurgy, and the oxidation resistance at 850, 900, and 950°C was investigated. The high-temperature oxidation-resistance mechanism and oxidation dynamics were discussed following the oxide skin morphology and microstructural evolution analysis. The oxide skin structures were similar for 850 and 900°C, with TiO2+Al2O3 mixture covering TiO2 with dispersed Nb2O5. At 950°C, the oxide skin was divided into four sublayers, from the outside to the parent metal: loose TiO2+Al2O3, dense Al2O3, dense TiO2+Nb2O5, and TiO2 matrix with dispersed Nb2O5. The Nb layer suppressed the outward diffusion of Ti atoms, hindering the growth of TiO2, and simultaneously promote the formation of a continuous Al2O3 protective layer, providing the alloy with long-term high-temperature oxidation resistance.
    • loading
    • [1]
      S. Naka, M. Thomas, and T. Khan, Potential and prospects of some intermetallic compounds for structural applications, [in] C.T. Liu, R.W. Cahn, and G. Sauthoff, eds., Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, NATO ASI Series, vol 213. Springer, Dordrecht, 1992.
      [2]
      K. Uenishi and K.F. Kobayashi, Processing of intermetallic compounds for structural applications at high temperature, Intermetallics, 4(1996), Suppl.1, p. S95. doi: 10.1016/0966-9795(96)00016-7
      [3]
      J.P. Lin, X.J. Xu, Y.L. Wang, S.F. He, Y. Zhang, X.P. Song, and G.L. Chen, High temperature deformation behaviors of a high Nb containing TiAl alloy, Intermetallics, 15(2007), No. 5-6, p. 668. doi: 10.1016/j.intermet.2006.10.029
      [4]
      G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, and C.T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater., 15(2016), No. 8, p. 876. doi: 10.1038/nmat4677
      [5]
      Y.W. Kim and S.L. Kim, Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future, JOM, 70(2018), No. 4, p. 553. doi: 10.1007/s11837-018-2747-x
      [6]
      H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength-ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675. doi: 10.1016/j.pmatsci.2020.100675
      [7]
      H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui, and H.L. Xie, Deformation behavior of brittle/ductile multilayered composites under interface constraint effect, Int. J. Plast., 89(2017), p. 96. doi: 10.1016/j.ijplas.2016.11.005
      [8]
      W. Yu, J.X. Zhou, Y.J. Yin, Z.X. Tu, X. Feng, H. Nan, J.P. Lin, and X.F. Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1225. doi: 10.1007/s12613-021-2252-z
      [9]
      F. Appel, H. Clemens, and F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Prog. Mater. Sci., 81(2016), p. 55. doi: 10.1016/j.pmatsci.2016.01.001
      [10]
      H. Clemens and S. Mayer, Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties, Mater. High Temp., 33(2016), No. 4-5, p. 560. doi: 10.1080/09603409.2016.1163792
      [11]
      B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp., 33(2016), No. 4-5, p. 549. doi: 10.1080/09603409.2016.1183068
      [12]
      L.L. Xiang, L.L. Zhao, Y.L. Wang, L.Q. Zhang, and J.P. Lin, Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys, Intermetallics, 27(2012), p. 6. doi: 10.1016/j.intermet.2012.01.015
      [13]
      H. Wu, M. Huang, X.W. Li, Y.P. Xia, Z. Wang, and G.H. Fan, Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti–Ti(Al) composites, Int. J. Plast., 141(2021), art. No. 102998. doi: 10.1016/j.ijplas.2021.102998
      [14]
      J.J. Dai, J.Y. Zhu, C.Z. Chen, and F. Weng, High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review, J. Alloys Compd., 685(2016), p. 784. doi: 10.1016/j.jallcom.2016.06.212
      [15]
      J.J. Dai, H.J. Yu, J.Y. Zhu, F. Weng, and C.Z. Chen, Mechanical properties and high temperature oxidation behavior of Ti–Al coating reinforced by nitrides on Ti–6Al–4V alloy, Surf. Rev. Lett., 23(2016), No. 5, art. No. 1650031. doi: 10.1142/S0218625X16500311
      [16]
      Y.D. Fu, X.Q. Niu, L.J. Zhang, F. Yan, J. Zheng, and X.L. Meng, Phase composition of hot-dipped Ti–Al cladding on Ti6Al4V alloy, Heat Treat. Met., 40(2015), No. 3, p. 62.
      [17]
      X.M. Peng, C.Q. Xia, Z.H. Wang, Z. Huang, and J.H. Wang, Development of high temperature oxidation and protection of TiAl-based alloy, Chin. J. Nonferrous Met., 20(2010), No. 6, p. 1116.
      [18]
      W. Przybilla and M. Schütze, Growth stresses in the oxide scales on TiAl alloys at 800 and 900°C, Oxid. Met., 58(2002), No. 3/4, p. 337. doi: 10.1023/A:1020110905907
      [19]
      C. Leyens, R. Braun, M. Fröhlich, and P.E. Hovsepian, Recent progress in the coating protection of gamma titanium-aluminides, JOM, 58(2006), No. 1, p. 17. doi: 10.1007/s11837-006-0062-4
      [20]
      A. Rahmel, M. Schütze, and W.J. Quadakkers, Fundamentals of TiAl oxidation—A critical review, Werkst. Korros., 46(1995), No. 5, p. 271. doi: 10.1002/maco.19950460503
      [21]
      J.J. Dai, J.Y. Zhu, L. Zhuang, and S.Y. Li, Effect of surface aluminizing on long-term high-temperature thermal stability of TC4 titanium alloy, Surf. Rev. Lett., 23(2016), No. 2, art. No. 1550102. doi: 10.1142/S0218625X15501024
      [22]
      M. Yoshihara and K. Miura, Effects of Nb addition on oxidation behavior of TiAl, Intermetallics, 3(1995), No. 5, p. 357. doi: 10.1016/0966-9795(95)94254-C
      [23]
      X.Y. Cheng, X.J. Wan, and J.N. Shen, The effect of Nb on the oxida-tion behavior of TiAl alloy at high temperature, J. Chin. Soc. Corros. Prot., 22(2002), No. 2, p. 69.
      [24]
      S.H. Ouyang, B. Liu, J.B. Li, L.Y. Xu, and Y. Liu, Effect of Nb on high temperature oxidation behavior of powder metallurgy TiAl based alloy, Mater. Sci. Eng. Powder Metall., 20(2015), No. 4, p. 616.
      [25]
      S. Taniguchi, Y. Tachikawa, and T. Shibata, Influence of oxygen partial pressure on the oxidation behaviour of TiAl at 1300 K, Mater. Sci. Eng. A, 232(1997), No. 1-2, p. 47. doi: 10.1016/S0921-5093(97)00085-3
      [26]
      K. Kovács, I.V. Perczel, V.K. Josepovits, G. Kiss, F. Réti, and P. Deák, In situ surface analytical investigation of the thermal oxidation of Ti–Al intermetallics up to 1000°C, Appl. Surf. Sci., 200(2002), No. 1-4, p. 185. doi: 10.1016/S0169-4332(02)00875-9
      [27]
      T.N. Taylor and M.T. Paffett, Oxide properties of a γ-TiAl: A surface science study, Mater. Sci. Eng. A, 153(1992), No. 1-2, p. 584. doi: 10.1016/0921-5093(92)90255-Y
      [28]
      S. Das, The Al–O–Ti (Aluminum-oxygen-titanium) system, J. Phase Equilibria, 23(2002), No. 6, p. 525. doi: 10.1361/105497102770331271
      [29]
      H.L. Du, P.K. Datta, Z. Klusek, and J.S. Burnell-Gray, Nanoscale studies of the early stages of oxidation of a TiAl-base alloy, Oxid. Met., 62(2004), No. 3-4, p. 175. doi: 10.1007/s11085-004-7806-8
      [30]
      J. Shen, L. Zhou, and T. Li, Effects of surface-applied ceria on the stability of thermally growing chromia scale of FeCr alloys and 310steel, J. Mater. Sci., 33(1998), No. 24, p. 5815. doi: 10.1023/A:1004454132011
      [31]
      D. Vojtěch, J. Čížkovský, P. Novák, J. Šerák, and T. Fabián, Effect of niobium on the structure and high-temperature oxidation of TiAl–Ti5Si3 eutectic alloy, Intermetallics, 16(2008), No. 7, p. 896. doi: 10.1016/j.intermet.2008.04.005
      [32]
      S.K. Varma, A. Chan, and B.N. Mahapatra, Static and cyclic oxidation of Ti–44Al and Ti–44Al–xNb alloys, Oxid. Met., 55(2001), No. 5/6, p. 423. doi: 10.1023/A:1010351613733
      [33]
      M. Yoshihara and Y.W. Kim, Oxidation behavior of gamma alloys designed for high temperature applications, Intermetallics, 13(2005), No. 9, p. 952. doi: 10.1016/j.intermet.2004.12.007
      [34]
      M. Eckert, D. Kath, and K. Hilpert, Thermodynamic activities in the alloys of the Ti–Al–Nb system, Metall. Mater. Trans. A, 30(1999), No. 5, p. 1315. doi: 10.1007/s11661-999-0280-9

    Catalog


    • /

      返回文章
      返回