留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  704
  • HTML全文浏览量:  405
  • PDF下载量:  38
  • 被引次数: 0
Wenbiao Liu, Wenxuan Huang, Feng Rao, Zhanglei Zhu, Yongming Zheng, and Shuming Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 446-454. https://doi.org/10.1007/s12613-021-2321-3
Cite this article as:
Wenbiao Liu, Wenxuan Huang, Feng Rao, Zhanglei Zhu, Yongming Zheng, and Shuming Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 446-454. https://doi.org/10.1007/s12613-021-2321-3
引用本文 PDF XML SpringerLink
研究论文

捕收剂DTAB在石英与氟磷灰石反浮选分离中的应用

  • 通讯作者:

    饶峰    E-mail: fengrao@fzu.edu.cn

    朱张磊    E-mail: zhu3748@gmail.com

文章亮点

  • (1) 捕收剂DTAB首次被用来分离氟磷灰石和石英。
  • (2) 相比DAC,DTAB能够实现氟磷灰石和石英的高效分离。
  • (3) 比较了DTAB和DAC在氟磷灰石和石英表面吸附行为差异。
  • 浮选脱硅是获得高品位氟磷灰石必不可少的步骤。在这项工作中,十二烷基三甲基溴化铵 (DTAB) 被推荐作为一种反浮选分离氟磷灰石和石英的有效捕收剂。借助浮选试验比较了DTAB和传统捕收剂十二胺盐酸盐 (DAC)对石英的捕收性能及氟磷灰石的选择性能的差异;通过接触角测定、zeta 电位检测和吸附密度测量分析了DTAB和DAC在矿物表面的吸附行为差别。结果表明,与 DAC 相比,DTAB 对石英具有相同的捕收性能,并且对氟磷灰石具有更好的选择性能(或更差的捕收性能),能够实现两种矿物的高效分离。表面化学分析结果指出,DTAB在石英表面的吸附能力与DAC一样强,而DTAB在氟磷灰石表面的吸附量远低于DAC,这与浮选结果一致。因而,DTAB 是一种有潜力的捕收剂,可用于氟磷灰石资源的高效纯化和可持续利用。

  • Research Article

    Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite

    + Author Affiliations
    • Reverse flotation desilication is an indispensable step for obtaining high-grade fluorapatite. In this work, dodecyltrimethylammonium bromide (DTAB) is recommended as an efficient collector for the reverse flotation separation of quartz from fluorapatite. Its collectivity for quartz and selectivity for fluorapatite were also compared with figures corresponding to the conventional collector dodecylamine hydrochloride (DAC) via microflotation experiments. The adsorption behaviors of DTAB and DAC on minerals were systematically investigated with surface chemical analyses, such as contact angle determination, zeta potential detection, and adsorption density measurement. The results revealed that compared to DAC, DTAB displayed a similar and strong collectivity for quartz, and it showed a better selectivity (or worse collectivity) for fluorapatite, resulting in a high-efficiency separation of the two minerals. The surface chemical analysis results showed that the adsorption ability of DTAB on the quartz surface was as strong as that of DAC, whereas the adsorption amount of DTAB on the fluorapatite surface was much lower than that of DAC, which is associated with the flotation performance. During the floatation separation of the actual ore, 8wt% fluorapatite with a higher grade can be obtained using DTAB in contrast to DAC. Therefore, DTAB is a promising collector for the high-efficiency purification and sustainable utilization of valuable fluorapatite recourses.

    • loading
    • [1]
      R.C. Santana, C.R. Duarte, C.H. Ataíde, and M.A.S. Barrozo, Flotation selectivity of phosphate ore: Effects of particle size and reagent concentration, Sep. Sci. Technol., 46(2011), No. 9, p. 1511. doi: 10.1080/01496395.2011.561268
      [2]
      R.C. Santana, A.C.C. Farnese, M.C.B. Fortes, C.H. Ataíde, and M.A.S. Barrozo, Influence of particle size and reagent dosage on the performance of apatite flotation, Sep. Purif. Technol., 64(2008), No. 1, p. 8. doi: 10.1016/j.seppur.2008.09.004
      [3]
      J.A.E. de Carvalho, P.R.G. Brandão, A.B. Henriques, P.S. de Oliveira, R.Z.L. Cançado, and G.R. de Silva, Selective flotation of apatite from micaceous minerals using patauá palm tree oil collector, Miner. Eng., 156(2020), art. No. 106474. doi: 10.1016/j.mineng.2020.106474
      [4]
      R.H.E.M. Koppelaar and H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Global Environ. Change, 23(2013), No. 6, p. 1454. doi: 10.1016/j.gloenvcha.2013.09.002
      [5]
      M.C. Fuerstenau, G. Jameson, and R.H. Yoon, Froth Flotation: A Century of Innovation, Society for Mining, Metallurgy, and Exploration. Inc., Littleton, 2007.
      [6]
      A. Amirech, M. Bouhenguel, and S. Kouachi, Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors, Arab. J. Geosci., 11(2018), No. 19, p. 593. doi: 10.1007/s12517-018-3951-2
      [7]
      X. Zheng and R.W. Smith, Dolomite depressants in the flotation of apatite and collophane from dolomite, Miner. Eng., 10(1997), No. 5, p. 537. doi: 10.1016/S0892-6875(97)00031-9
      [8]
      F. Zhou, L.X. Wang, Z.H. Xu, Q.X. Liu, and R. Chi, Reactive oily bubble technology for flotation of apatite, dolomite and quartz, Int. J. Miner. Process., 134(2015), p. 74. doi: 10.1016/j.minpro.2014.11.009
      [9]
      Y.Y. Ruan, D.S. He, and R. Chi, Review on beneficiation techniques and reagents used for phosphate ores, Minerals, 9(2019), No. 4, art. No. 253. doi: 10.3390/min9040253
      [10]
      W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
      [11]
      C. Li, C.Y. Sun, Y.L. Wang, Y.F. Fu, P.Y. Xu, and W.Z. Yin, Research on new beneficiation process of low-grade magnesite using vertical roller mill, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 432. doi: 10.1007/s12613-019-1898-2
      [12]
      Y.Y. Ruan, Z.Q. Zhang, H.H. Luo, C.Q. Xiao, F. Zhou, and R. Chi, Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector, Minerals, 7(2017), No. 5, art. No. 65. doi: 10.3390/min7050065
      [13]
      A.Z.M. Abouzeid, A.T. Negm, and D.A. Elgillani, Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics, Int. J. Miner. Process., 90(2009), No. 1-4, p. 81. doi: 10.1016/j.minpro.2008.10.005
      [14]
      Y.J. Li, Research and practice in phosphate beneficiation in Yunnan Province, J. Wuhan Inst. Technol., 33(2011), No. 2, p. 12.
      [15]
      A.Z.M. Abouzeid, Physical and thermal treatment of phosphate ores—An overview, Int. J. Miner. Process., 85(2008), No. 4, p. 59. doi: 10.1016/j.minpro.2007.09.001
      [16]
      H.S. Hanna, The role of cationic surfactants in the selective flotation of phosphate ore constituents, Powder Technol., 12(1975), No. 1, p. 57. doi: 10.1016/0032-5910(75)85008-X
      [17]
      A.F. Rosa and J. Rubio, On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178. doi: 10.1016/j.mineng.2018.08.020
      [18]
      A.T. Salah, Y. Roe-Hoan, and S. Dongcheol, A comparison of anionic and cationic flotation of a siliceous phosphate rock in a column flotation cell, Min. Sci. Technol. China, 21(2011), No. 1, p. 147. doi: 10.1016/j.mstc.2010.12.017
      [19]
      Y. Han, S. Han, B. Kim, J. Yang, J. Choi, K. Kim, K.S. You, and H. Kim, Flotation separation of quartz from apatite and surface forces in bubble-particle interactions: Role of pH and cationic amine collector contents, J. Ind. Eng. Chem., 70(2019), p. 107. doi: 10.1016/j.jiec.2018.09.036
      [20]
      X.B. Li, Q. Zhang, B. Hou, J.J. Ye, S. Mao, and X.H. Li, Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms, Powder Technol., 318(2017), p. 224. doi: 10.1016/j.powtec.2017.06.003
      [21]
      Z.Q. Huang, C. Cheng, K. Li, S.Y. Zhang, J.R. Zhou, W.H. Luo, Z.W. Liu, W.W. Qin, H.L. Wang, Y.J. Hu, G.C. He, X.Y. Yu, T.S. Qiu, and W. Fu, Reverse flotation separation of quartz from phosphorite ore at low temperatures by using an emerging Gemini surfactant as the collector, Sep. Purif. Technol., 246(2020), art. No. 116923. doi: 10.1016/j.seppur.2020.116923
      [22]
      Z.Q. Huang, C. Cheng, Z.W. Liu, H.Q. Zeng, B. Feng, H. Zhong, W.H. Luo, Y.J. Hu, Z.Q. Guo, G.C. He, and W. Fu, Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer, J. Cleaner Prod., 221(2019), p. 108. doi: 10.1016/j.jclepro.2019.02.251
      [23]
      Z. Cao, Y.D. Cao, Q.Q. Qu, J.S. Zhang, and Y.F. Mu, Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant, Miner. Eng., 134(2019), p. 134. doi: 10.1016/j.mineng.2019.01.030
      [24]
      O. Salmani Nuri, E. Allahkarami, M. Irannajad, and A. Abdollahzadeh, Estimation of selectivity index and separation efficiency of copper flotation process using ANN model, Geosystem Eng., 20(2017), No. 1, p. 41. doi: 10.1080/12269328.2016.1220334
      [25]
      J. Drelich, Guidelines to measurements of reproducible contact angles using a sessile-drop technique, Surf. Innov., 1(2013), No. 4, p. 248. doi: 10.1680/si.13.00010
      [26]
      B. Yang, W.Z. Yin, Z.L. Zhu, H.R. Sun, Q.Y. Sheng, Y.F. Fu, J. Yao, and K. Zhao, Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite, Sep. Purif. Technol., 256(2021), art. No. 117803. doi: 10.1016/j.seppur.2020.117803
      [27]
      B. Yang, H.R. Sun, D.H. Wang, W.Z. Yin, S.H. Cao, Y.L. Wang, Z.L. Zhu, K. Jiang, and J. Yao, Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation, Sep. Purif. Technol., 250(2020), art. No. 117278. doi: 10.1016/j.seppur.2020.117278
      [28]
      Y.X. Yu, L.Q. Ma, M.L. Cao, and Q. Liu, Slime coatings in froth flotation: A review, Miner. Eng., 114(2017), p. 26. doi: 10.1016/j.mineng.2017.09.002
      [29]
      B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492. doi: 10.1016/j.mineng.2020.106492
      [30]
      Z.L. Zhu, D.H. Wang, B. Yang, W.Z. Yin, M.S. Ardakani, J. Yao, and J.W. Drelich, Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions, Miner. Eng., 151(2020), art. No. 106340. doi: 10.1016/j.mineng.2020.106340
      [31]
      H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, Y. Hou, and J. Yao, New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660. doi: 10.1016/j.mineng.2020.106660
      [32]
      J.W. Drelich, Contact angles: From past mistakes to new developments through liquid–solid adhesion measurements, Adv. Colloid Interface Sci., 267(2019), p. 1. doi: 10.1016/j.cis.2019.02.002
      [33]
      J.W. Drelich, L. Boinovich, E. Chibowski, C. Della Volpe, L. Hołysz, A. Marmur, and S. Siboni, Contact angles: History of over 200 years of open questions, Surf. Innov., 8(2020), No. 1-2, p. 3. doi: 10.1680/jsuin.19.00007
      [34]
      Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113. doi: 10.1007/s12613-018-1662-z
      [35]
      Y.F. Fu, W.Z. Yin, X.S. Dong, C.Y. Sun, B. Yang, J. Yao, H.L. Li, C. Li, and H. Kim, New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
      [36]
      Z.L. Zhu, W.Z. Yin, D.H. Wang, H.R. Sun, K.Q. Chen, and B. Yang, The role of surface roughness in the wettability and floatability of quartz particles, Appl. Surf. Sci., 527(2020), art. No. 146799. doi: 10.1016/j.apsusc.2020.146799
      [37]
      G.B. Abaka-Wood, J. Addai-Mensah, and W. Skinner, A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors, Int. J. Miner. Process., 158(2017), p. 55. doi: 10.1016/j.minpro.2016.11.012
      [38]
      G.B. Abaka-Wood, J. Addai-Mensah, and W. Skinner, Selective flotation of rare earth oxides from hematite and quartz mixtures using oleic acid as a collector, Int. J. Miner. Process., 169(2017), p. 60. doi: 10.1016/j.minpro.2017.10.002
      [39]
      J. Xie, Q. Zhang, S. Mao, X.H. Li, Z.H. Shen, and L.J. Li, Anisotropic crystal plane nature and wettability of fluorapatite, Appl. Surf. Sci., 493(2019), p. 294. doi: 10.1016/j.apsusc.2019.06.195
      [40]
      M.Y. Li, J. Liu, Y.M. Hu, X.P. Gao, Q.D. Yuan, and F.G. Zhao, Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation, Carbohydr. Polym., 240(2020), art. No. 116334. doi: 10.1016/j.carbpol.2020.116334
      [41]
      W.J. Zhang, Z.T. Feng, H. Mulenga, W. Sun, J. Cao, and Z.Y. Gao, Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite, Chem. Eng. Sci., 226(2020), art. No. 115860. doi: 10.1016/j.ces.2020.115860
      [42]
      C. Liu, W.C. Zhang, S.X. Song, and H.Q. Li, A novel method to improve carboxymethyl cellulose performance in the flotation of talc, Miner. Eng., 131(2019), p. 23. doi: 10.1016/j.mineng.2018.11.003
      [43]
      B. Yang, W.Z. Yin, J. Yao, Q.Y. Sheng, and Z.L. Zhu, Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study, Appl. Surf. Sci., 571(2022), art. No. 151177. doi: 10.1016/j.apsusc.2021.151177
      [44]
      Y.P. Niu, C.Y. Sun, W.Z. Yin, X.R. Zhang, H.F. Xu, and X. Zhang, Selective flotation separation of andalusite and quartz and its mechanism, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1059. doi: 10.1007/s12613-019-1842-5
      [45]
      B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface, Miner. Eng., 117(2018), p. 121. doi: 10.1016/j.mineng.2017.12.016
      [46]
      X.R. Zhang, Y.G. Zhu, Y. Xie, Y.B. Shang, and G.B. Zheng, A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz, Sep. Purif. Technol., 186(2017), p. 175. doi: 10.1016/j.seppur.2017.05.051
      [47]
      X.M. Jiang, Q.J. Guo, H.Y. Li, J. Jiang, Y. Chen, and T. Xie, Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz, Colloids Surf. A., 535(2017), p. 201. doi: 10.1016/j.colsurfa.2017.09.047
      [48]
      N. Nan, Y.M. Zhu, and Y.X. Han, Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite, Miner. Eng., 132(2019), p. 162. doi: 10.1016/j.mineng.2018.11.048
      [49]
      Q.B. Cao, H. Zou, X.M. Chen, and S.M. Wen, Flotation selectivity of N-hexadecanoylglycine in the fluorapatite-dolomite system, Miner. Eng., 131(2019), p. 353. doi: 10.1016/j.mineng.2018.11.033
      [50]
      Z.Q. Huang, H. Zhong, S. Wang, L.Y. Xia, W.B. Zou, and G.Y. Liu, Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide), Chem. Eng. J., 257(2014), p. 218. doi: 10.1016/j.cej.2014.07.057
      [51]
      W. Lv, B. Bazin, D.S. Ma, Q.J. Liu, D. Han, and K.Y. Wu, Static and dynamic adsorption of anionic and amphoteric surfactants with and without the presence of alkali, J. Pet. Sci. Eng., 77(2011), No. 2, p. 209. doi: 10.1016/j.petrol.2011.03.006

    Catalog


    • /

      返回文章
      返回