留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2366
  • HTML全文浏览量:  670
  • PDF下载量:  197
  • 被引次数: 0
Yongfeng Cai, Ningning Song, Yunfei Yang, Lingmin Sun, Peng Hu,  and Jinshu Wang, Recent progress of efficient utilization of titanium-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 22-31. https://doi.org/10.1007/s12613-021-2323-1
Cite this article as:
Yongfeng Cai, Ningning Song, Yunfei Yang, Lingmin Sun, Peng Hu,  and Jinshu Wang, Recent progress of efficient utilization of titanium-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 22-31. https://doi.org/10.1007/s12613-021-2323-1
引用本文 PDF XML SpringerLink
特约综述

含钛高炉渣高效利用的最新进展

  • 通讯作者:

    胡鹏    E-mail: pengh@bjut.edu.cn

    王金淑    E-mail: wangjsh@bjut.edu.cn

文章亮点

  • (1) 系统总结了含钛高炉渣高效利用的各类途径。
  • (2) 对含钛高炉渣高效利用途径的作用机理进行了深入讨论。
  • (3) 指出新兴的理论研究、可靠的热力学数据库和先进的表征手段将有助于含钛高炉渣高效利用的进一步研究。
  • 含钛高炉渣是含钛冶金渣中难以处理的一类硅铝酸盐固体废弃物,大量堆积的含钛高炉渣造成了严重的资源浪费和环境污染。因此,开发绿色、高效的含钛高炉渣利用途径是资源节约和环境保护的关键需求。在过去的几十年里,多种途径被用于含钛高炉渣高效利用的研究,并在研究含钛高炉渣的基本特征和开发高效方法等方面取得了重大进展。本文回顾了近年来高效利用含钛高炉渣的各类方法,从用作建筑材料的原料、碳化氯化法提钛、钛合金的制备、酸法、碱熔煅烧法和高温重结晶–富集等角度全面地介绍了高效利用含钛高炉渣的研究进展。重点讨论了各类方法的反应机制和目前的现状。然而,目前的利用方法在效率和成本上仍与实际应用相差很远。因此,开发清洁、高效、大规模利用含钛高炉渣的新方法仍然是一个重要的目标。要实现这一目标,需要重点研究以下三个方面:(1) 发展新兴的理论方法;(2) 开发全面可靠的热力学性质数据库;(3) 开发先进的表征方法。这一系统和全面的回顾将有利于设计高效和低成本的利用路线。

  • Invited Review

    Recent progress of efficient utilization of titanium-bearing blast furnace slag

    + Author Affiliations
    • Titanium-bearing blast furnace slag (BFS) has valuable compositions and potential environmental hazardousness. Thus, developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection. In the past decades, many attempts have been adopted to reuse BFS efficiently, and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved. This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches, along with their application prospects. In particular, the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources. This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost.

    • loading
    • [1]
      Y. Guo, H.Y. Li, Y.H. Yuan, J. Huang, J. Diao, G. Li, and B. Xie, Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974. doi: 10.1007/s12613-020-2105-1
      [2]
      X.M. Zhang, Study on Anti-Erosion Materials Prepared with Titanium-Bearing Blast Furnace Slag by Carbon-Thermal Reduction and Nitridation [Dissertation], North China University of Science and Technology, Tangshan, 2016, p. 16.
      [3]
      V. Grass, P. Istomin, and L. Nazarova, X-ray diffraction refinement of the crystal structure of anosovite prepared from leucoxene, Cryst. Res. Technol., 44(2009), No. 1, p. 117. doi: 10.1002/crat.200800213
      [4]
      X.S. Li and B. Xie, Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 595. doi: 10.1007/s12613-012-0600-8
      [5]
      D.K. Thomas and R.M. Grecia, Historical Statistics for Mineral and Material Commodities in the United States, United States Geological Survey, Commonwealth of Virginia, 2015, p. 10.
      [6]
      Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 131. doi: 10.1007/s12613-018-1556-0
      [7]
      L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684. doi: 10.1016/j.mineng.2007.01.003
      [8]
      J.L. Guo, Y.P. Bao, and M. Wang, Steel slag in China: Treatment, recycling, and management, Waste Manage., 78(2018), p. 318. doi: 10.1016/j.wasman.2018.04.045
      [9]
      H.L. Li and N.L. Li, Advance in comprehensive utilization of titanium slag resources, J. Guiyang Univ. Nat. Sci., 12(2017), No. 4, p. 56.
      [10]
      W. Mo, Titanium, Metallurgical Industry Press, Beijing, 1998, p. 153.
      [11]
      B.Q. Han, P. Wang, C.M. Ke, W. Yan, Y.W. Wei, and N. Li, Hydration behavior of spinel containing high alumina cement from high titania blast furnace slag, Cem. Concr. Res., 79(2016), p. 257. doi: 10.1016/j.cemconres.2015.09.019
      [12]
      J. Zhang, Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, 2007, p. 203.
      [13]
      J.J. Shi, L.F. Sun, J.Y. Qiu, and M.F. Jiang, Phase equilibria of CaO−SiO2−5wt.%MgO−30wt.%Al2O3−TiO2 system at 1400°C and 1450°C relevant to high Al2O3 Ti-bearing blast furnace slag system, J. Alloys Compd., 722(2017), p. 25. doi: 10.1016/j.jallcom.2017.06.058
      [14]
      J.J. Shi, L.F. Sun, J.Y. Qiu, B. Zhang, and M.F. Jiang, Phase equilibria of CaO−SiO2−5wt% MgO−10wt%Al2O3−TiO2 system at 1300°C and 1400°C relevant to Ti-bearing furnace slag, J. Alloys Compd., 699(2017), p. 193. doi: 10.1016/j.jallcom.2016.12.328
      [15]
      D. Yang, H.H. Zhou, J. Wang, Z.D. Pang, G.S. Pei, Z.M. Yan, H.X. Mao, G.B. Qiu, and X. Lv, Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag, J. Mater. Res. Technol., 12(2021), p. 1615. doi: 10.1016/j.jmrt.2021.03.069
      [16]
      H.B. Ma, K.X. Jiao, and J.L. Zhang, The influence of basicity and TiO2 on the crystallization behavior of high Ti-bearing slags, CrystEngComm, 22(2020), No. 2, p. 361. doi: 10.1039/C9CE01695C
      [17]
      H.T. Shen and E. Forssberg, An overview of recovery of metals from slags, Waste Manage., 23(2003), No. 10, p. 933. doi: 10.1016/S0956-053X(02)00164-2
      [18]
      B.C. Jena, W. Dresler, and I.G. Reilly, Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Miner. Eng., 8(1995), No. 1-2, p. 159. doi: 10.1016/0892-6875(94)00110-X
      [19]
      H.G. Dong, A Fundamental Investigation on Recovery of Titanium from Titanium-bearing Blast Furnace Slag [Dissertation], Central South University, Changsha, 2006, p. 14.
      [20]
      C.S. Deng, Phase composition of vanadium-containing fused titanium slag, Iron. Steel. Van. Tit., 2(1985), No. 1, p. 22.
      [21]
      W. Yu, Commercial-scale test on Ti slag smelting from Ti concentrate, Rare. Met. Cement. Carbide., 32(2004), No. 4, p. 29.
      [22]
      Z.Y. Wang, J.L. Zhang, Z.J. Liu, G.W. Wang, K.X. Jiao, K.J. Li, and T.J. Yang, Production of ferrotitanium alloy from titania slag based on aluminothermic reduction, J. Alloys Compd., 810(2019), art. No. 151969. doi: 10.1016/j.jallcom.2019.151969
      [23]
      Y. Wang and P. Suraneni, Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials, Constr. Build. Mater., 204(2019), p. 458. doi: 10.1016/j.conbuildmat.2019.01.196
      [24]
      Z. Wang, H.Y. Sun, and Q.S. Zhu, Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1120. doi: 10.1007/s12613-019-1830-9
      [25]
      J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 310. doi: 10.1007/s12613-019-1914-6
      [26]
      Z.Y. Wang, J.L. Zhang, B.J. Zhao, and Z.J. Liu, Extraction of titanium resources from the titanium-containing waste slag: Thermodynamic analysis and experimental verification, Calphad, 71(2020), art. No. 102211. doi: 10.1016/j.calphad.2020.102211
      [27]
      W.C. He, X.W. Lü, C.Y. Ding, and Z.M. Yan, Oxidation pathway and kinetics of titania slag powders during cooling process in air, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 981. doi: 10.1007/s12613-020-2019-y
      [28]
      Y.H. Shi, Q.H. Liu, Y.F. Zhang, and H. Wang, Structure, Study on the physicochemical properties of panzhihua iron concentrate pellets deep reduction titanium slag, Iron Steel Vanadium Titanium, 14(1993), No. 1, p. 7.
      [29]
      J.M. Montenegro-Cooper, M. Celemín-Matachana, J. Cañizal, and J.J. González, Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils, Constr. Build. Mater., 203(2019), p. 201. doi: 10.1016/j.conbuildmat.2019.01.040
      [30]
      H.M. Jiang, Research and Application of High Titanium Heavy Slag Aggregate of High Performance Concrete [Dissertation], Wuhan University of Technology, Wuhan, 2011, p. 52.
      [31]
      Y. Shi, H.M. Yang, and H.Q. Yang, Experimental study on cement-based composites with high-titanium slag, [in] Proceedings of the 2009 International Symposium on Environmental Science and Technology, Florida, 2009, p. 2280.
      [32]
      X. Li, R.F. Qiu, F.B. Xue, L. Fang, and F.Q. Cheng, Effects of unreactive MgO and impurities in light burned MgO on the hydration process and performance of base magnesium sulfate cement, Constr. Build. Mater., 240(2020), art. No. 117854. doi: 10.1016/j.conbuildmat.2019.117854
      [33]
      J.Q. Ao, J.Z. Hao, H.B. Wang, and Z.W. Cao, Development of slag brick with high content of Ti-bearing slag, Iron Steel Vanadium Titanium, 28(2007), No. 2, p. 57.
      [34]
      K.F. Tan and Z.L. Zhou, Study on the availability of activating the reactivity of titanium bearing slag and using it to produce new wall materials, J. Wuhan Univ. Technol., 26(2004), No. 7, p. 31.
      [35]
      Y.Q. Li, C.M. Ke, S.X. Hou, B.Q. Han, and N. Li, Research on reduction of Panzhihua iron and steel co BF slag by carbon thermal reaction, Bull. Chin. Ceram. Soc., 26(2007), No. 3, p. 447.
      [36]
      J. Qin, Y. Wang, Z.X. You, L.Y. Wen, and X.W. Lv, Carbonization and nitridation of vanadium-bearing titanomagnetite during carbothermal reduction with coal, J. Mater. Res. Technol., 9(2020), No. 3, p. 4272. doi: 10.1016/j.jmrt.2020.02.053
      [37]
      E. Özbay, M. Erdemir, and H.İ. Durmuş, Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review, Constr. Build. Mater., 105(2016), p. 423. doi: 10.1016/j.conbuildmat.2015.12.153
      [38]
      Y.X. Liang and Y.C. Che, Inorganic Thermodynamics Data Book, Northeastern University Press, Shenyang, 1993, p. 95.
      [39]
      H.G. Du, Principle of V−Ti-Bearing Magnetic Ore Smelting in a Blast Furnace, Science Press, Beijing, 1996, p. 40.
      [40]
      P. Liu, L.B. Zhang, B.G. Liu, G.J. He, J.H. Peng, and M.Y. Huang, Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 88. doi: 10.1007/s12613-020-1985-4
      [41]
      X.H. Liu, Study on High-Temperature Carbonization and Low-Temperature Chlorination on Modified Titanium Bearing Bearing Blast Furnace Slag [Dissertation], Northeastern University, Shenyang, 2009, p. 18.
      [42]
      Y.J. Wang, Study on the Crystal and Surface Properties of Black Titanium in Molten Titanium Slag [Dissertation], Kunming University of Science and Technology, Kunming, 2017, p. 9.
      [43]
      F. Safdar, Y. Zhang, S.L. Zheng, X. Chen, P. Sun, Y. Zhang, and P. Li, Recovery of TiO2-enriched material from vanadium titano-magnetite concentrates by partial carbon reduction and mild acid leaching, Hydrometallurgy, 193(2020), art. No. 105324. doi: 10.1016/j.hydromet.2020.105324
      [44]
      N.X. Fu, T.P. Lou, X.H. Du, and Z.T. Sui, Effect of additives on chlorination of modified titania-containing blast furnace slag, J. Northeast. Univ. Nat. Sci., 33(2012), No. 5, p. 698.
      [45]
      Q.Y. Huang, X.W. Lv, R. Huang, and J.J. Song, Preparation of Ti−Si−Al alloy by aluminothermic reduction of TiO2 bearing blast furnace slag, Can. Metall. Q., 52(2013), No. 4, p. 413. doi: 10.1179/1879139513Y.0000000087
      [46]
      Y. Lei, L.E. Sun, W.H. Ma, X.D. Ma, J.J. Wu, S.Y. Li, and K. Morita, An approach to employ titanium-bearing blast-furnace slag to prepare Ti and Al−Si alloys, J. Alloys Compd., 769(2018), p. 983. doi: 10.1016/j.jallcom.2018.08.077
      [47]
      Y. Lei, C. Wang, W.H. Ma, J.J. Wu, K.X. Wei, S.Y. Li, G. Lv, and K. Morita, A novel approach to prepare high-purity Si and Si/TiSi2 materials simultaneously using Ti-bearing blast furnace slag, J. Alloys Compd., 798(2019), p. 333. doi: 10.1016/j.jallcom.2019.05.291
      [48]
      Z.H. Pu, H.D. Jiao, Z.S. Mi, M.Y. Wang, and S.Q. Jiao, Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode, J. Energy Chem., 42(2020), p. 43. doi: 10.1016/j.jechem.2019.06.004
      [49]
      C. Wang, Y. Lei, W.H. Ma, and P. Qiu, An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag, J. Hazard. Mater., 401(2021), art. No. 123446. doi: 10.1016/j.jhazmat.2020.123446
      [50]
      H.J. Sun, G.B. Zhou, T.J. Peng, X. Wu, S.Q. He, and F. Zhou, Recovery of titanium from titanium-rich product prepared from high Ti-bearing blast furnace slag by sulfuric acid leaching, Min. Metall., 24(2015), No. 3, p. 54.
      [51]
      L. Wang, L. Chen, W.Z. Liu, G.Q. Zhang, S.W. Tang, H.R. Yue, B. Liang, and D.M. Luo, Recover titanium, aluminum, magnesium and separate silicon from titanium-bearing blast furnace slag by sulfuric acid curing-leaching, Int. J. Miner. Metall. Mater., (2021). Doi: 10.1007/s12613-021-2293-3
      [52]
      X.H. Liu, G.S. Gai, Y.F. Yang, Z.T. Sui, L. Li, and J.X. Fu, Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag, J. China Univ. Min. Technol., 18(2008), No. 2, p. 275. doi: 10.1016/S1006-1266(08)60058-9
      [53]
      J. Yang, S. Lei, J. Yu, and G.W. Xu, Low-cost V−W−Ti SCR catalyst from titanium-bearing blast furnace slag, J. Environ. Chem. Eng., 2(2014), No. 2, p. 1007. doi: 10.1016/j.jece.2014.03.022
      [54]
      B. Peng, W.Z. Yi, J. Peng, and D. Yu, A way of comprehensive utilization of blast furnace slag in panzhihua iron and steel company, Multipurpose Util. Miner. Resour., 1997, No. 5, p. 26.
      [55]
      Y. Xiong, B. Liang, and C. Li, Extraction and separation of titanium from air-cooled Ti-bearing blast furnace slag, Chin. J. Process. Eng., 8(2008), No. 6, p. 1092.
      [56]
      M.H. Wang, X.H. Du, and Z.T. Sui, Extracting titanium from titanium-rich blast furnace slag by sulfuric acid method, Multipurpose Util. Miner. Resour., 2000, No. 4, p. 5.
      [57]
      Y. Xiong, C. Li, B. Liang, and J. Xie, Leaching behavior of air cooled Ti-bearing blast-furnace slag in hydrochloric acid, Chin. J. Nonferrous. Met., 18(2008), No. 3, p. 557.
      [58]
      H.G. Dong, T. Jiang, Y.F. Guo, J.L. Chen, and X.X. Fan, Upgrading a Ti-slag by a roast-leach process, Hydrometallurgy, 113-114(2012), p. 119. doi: 10.1016/j.hydromet.2011.12.008
      [59]
      Y.B. Wang, T. Qi, J.L. Chu, and W. Zhao, Production of TiO2 from CaTiO3 by alkaline roasting method, Rare Met., 29(2010), No. 2, p. 162. doi: 10.1007/s12598-010-0028-0
      [60]
      G. Eriksson and A.D. Pelton, Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO−TiO2, MgO−TiO2, FeO−TiO2, Ti2O3−TiO2, Na2O−TiO2, and K2O−TiO2 systems, Metall. Trans. B, 24(1993), No. 5, p. 795. doi: 10.1007/BF02663140
      [61]
      K. Sun, J.H. Wu, Y.Y. Ma, Z.W. Hu, H.B. Wu, H.Q. Chen, X.H. Yu, W.D. Qin, and Z.Y. Li, Fundamental study of new treatment process for titaniferous blast furnace slag at pangang using phase separation, Iron Steel Vanadium Titanium, 21(2000), No. 3, p. 54.
      [62]
      Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), No. 1-2, p. 52. doi: 10.1016/j.hydromet.2008.08.002
      [63]
      X.D. Wang, Y.W. Mao, X.Y. Liu, and Y.K. Zhu, Study on crystallization behavior of blast furnace slag containing TiO2, J. Iron Steel Res., 2(1990), No. 3, p. 1.
      [64]
      X.B. Wan, J.J. Shi, L. Klemettinen, M. Chen, P. Taskinen, and A. Jokilaakso, Equilibrium phase relations of CaO−SiO2−TiO2 system at 1400 °C and oxygen partial pressure of 10−10 atm, J. Alloys Compd., 847(2020), art. No. 156472. doi: 10.1016/j.jallcom.2020.156472
      [65]
      X.D. Wang, Y.W. Mao, D.S. Xie, and Y.K. Zhu, The crystallization law of titanium-bearing blast furnace slag in the reduced state, J. East Chin. Inst. Metall., 10(1993), No. 4, p. 16.
      [66]
      L. Liu, M.L. Hu, Y.Z. Xu, C.G. Bai, and Y.H. Gan, Structure, growth process, and growth mechanism of perovskite in high-titanium-bearing blast furnace slag, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1751. doi: 10.1007/s11663-015-0350-x
      [67]
      M.L. Hu, L. Liu, X.W. Lv, C.G. Bai, and S.F. Zhang, Crystallization behavior of perovskite in the synthesized high-titanium-bearing blast furnace slag using confocal scanning laser microscope, Metall. Mater. Trans. B, 45(2014), No. 1, p. 76. doi: 10.1007/s11663-013-9950-5
      [68]
      N.X. Fu, Y.W. Zhang, and Z.T. Sui, The effects of cooling rate on the precipitation of the perovskite phase in blast furnace Ti-slags, Multipurpose Util. Miner. Resour., 1997, No. 4, p. 16.
      [69]
      M.Z. Wu, H.H. Lü, M.C. Liu, Z.L. Zhang, X.R. Wu, W.M. Liu, P. Wang, and L.S. Li, Direct extraction of perovskite CaTiO3 via efficient dissociation of silicates from synthetic Ti-bearing blast furnace slag, Hydrometallurgy, 167(2017), p. 8. doi: 10.1016/j.hydromet.2016.10.026
      [70]
      Y.H. Li, T.P. Lou, and Z.T. Sui, Effect of CaO and MnO on the crystallization of the perovskite phase in the Ti-Bearing blast furnace slag, J. Iron Steel Res., 12(2000), No. 3, p. 1.
      [71]
      N.X. Fu, L. Zhang, H.Y. Cao, and Z.T. Sui, Effects of additives on precipitation behavior of perovskite in Ti-bearing blast furnace slag, J. Iron Steel Res., 20(2008), No. 4, p. 13.
      [72]
      Y. Du, J.T. Gao, X. Lan, and Z.C. Guo, Recovery of rutile from Ti-Bearing blast furnace slag through phase transformation and super-gravity separation for dielectric material, Ceram. Int., 46(2020), No. 7, p. 9885. doi: 10.1016/j.ceramint.2019.12.264
      [73]
      J.T. Gao, Y.W. Zhong, and Z.C. Guo, Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in supergravity field, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2459. doi: 10.1007/s11663-016-0716-8
      [74]
      I.E. Grey, L.M.D. Cranswick, C. Li, T.J. White, and L.A. Bursill, New M3O5−anatase intergrowth structures formed during low-temperature oxidation of anosovite, J. Solid State Chem., 150(2000), No. 1, p. 128. doi: 10.1006/jssc.1999.8564
      [75]
      Z. Wang, Q.S. Zhu, H. Wang, and H.Y. Sun, Influence of the redox conditions on the crystallization behavior of anosovite in Ti-bearing titanomagnetite smelting slag, Results Chem., 3(2021), art. No. 100136. doi: 10.1016/j.rechem.2021.100136
      [76]
      S. Ren, J.L. Zhang, L.S. Wu, W.J. Liu, Y.N. Bai, X.D. Xing, B.X. Su, and D.W. Kong, Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag, ISIJ Int., 52(2012), No. 6, p. 984. doi: 10.2355/isijinternational.52.984
      [77]
      Z.M. Li, Y.Q. Sun, L.L. Liu, X.D. Wang, and Z.T. Zhang, Enhancement of rutile formation by ZrO2 addition in Ti-bearing blast furnace slags, ISIJ Int., 55(2015), No. 7, p. 1384. doi: 10.2355/isijinternational.55.1384

    Catalog


    • /

      返回文章
      返回