留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2615
  • HTML全文浏览量:  1125
  • PDF下载量:  53
  • 被引次数: 0
Yu Wang, Guohua Zhang, and Kuochih Chou, Preparation and oxidation characteristics of ZrC–ZrB2 composite powders with different proportions, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 521-528. https://doi.org/10.1007/s12613-021-2330-2
Cite this article as:
Yu Wang, Guohua Zhang, and Kuochih Chou, Preparation and oxidation characteristics of ZrC–ZrB2 composite powders with different proportions, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 521-528. https://doi.org/10.1007/s12613-021-2330-2
引用本文 PDF XML SpringerLink
研究论文

不同比例ZrC–ZrB2复合粉的制备及氧化特性研究

  • 通讯作者:

    张国华    E-mail: ghzhang0914@ustb.edu.cn

文章亮点

  • (1) 在碳热还原过程中,过量配入炭黑一方面以保证纳米ZrO2的充分还原,另一方面残余的炭黑颗粒阻碍了超细ZrC颗粒的长大。
  • (2) 在硼化过程中,加入不同量的B4C使得不同比例的ZrC硼化为ZrB2,Ca熔体脱除了反应体系中的游离碳。
  • (3) ZrC的渗硼过程是由ZrC颗粒表面向颗粒中心逐渐推进的渗硼反应。
  • ZrC和ZrB2都是熔点超过3000°C的化合物,是典型的超高温陶瓷,可被用作极端服役条件下的材料。由于ZrC和ZrB2的晶格结构不同,导致两者的物理化学特性存在差异。这也使得ZrC–ZrB2复合材料的综合性能往往高于单相材料。此类超高温陶瓷材料往往是通过粉末烧结法制备,超细粉体有利于再较为温和的条件下制备出细晶材料。目前已有的关于ZrC–ZrB2复合粉制备方法通常无法兼顾产品质量、成本控制、生产规模、工艺稳定性等方面。 因此,低成本、大规模且可控地制备超细ZrC–ZrB2复合粉末将对该材料的应用推广起到重要的促进作用。本研究提供了一种以纳米ZrO2、炭黑、B4C和金属钙为原料制备超细ZrC–ZrB2复合粉体的方法。该方法可以合成单相的ZrC和ZrB2以及任意比例的ZrC–ZrB2复合粉体。采用碳热还原法制备了ZrC和C的混合物。随后,通过调整B4C的加入量来控制ZrC–ZrB2复合粉体的成分比例。利用该方法,制备了五种不同ZrC/ZrB2摩尔比的粉末(100ZrC、75ZrC–25ZrB2、50ZrC–50ZrB2、25ZrC–75ZrB2和100ZrB2)。根据微观形貌分析,在1473 K下制备的产物的粒径为几十纳米,其中ZrC和ZrB2分别为立方和片状颗粒。根据ZrC特殊的核壳结构,推断其渗硼过程是由ZrC颗粒表面向颗粒中心逐渐推进的渗硼反应。最后,研究了不同配比的复合粉体的氧化特性。结果表明,随着ZrB2含量的增加,ZrC–ZrB2复合粉体的抗氧化性不断提高。当ZrB2的摩尔分数大于75mol%时,复合粉体的氧化特性接近纯ZrB2

  • Research Article

    Preparation and oxidation characteristics of ZrC–ZrB2 composite powders with different proportions

    + Author Affiliations
    • ZrC and ZrB2 are both typical ultra-high temperature ceramics, which can be used in the hyperthermal environment. In this study, a method for preparing ultrafine ZrC–ZrB2 composite powder was provided, by using the raw materials of nano ZrO2, carbon black, B4C, and metallic Ca. It is worth pointing out that ZrC–ZrB2 composite powder with any proportion of ZrC to ZrB2 could be synthesized by this method. Firstly, a mixture of ZrC and C was prepared by carbothermal reduction of ZrO2. By adjusting the addition amount of B4C, ZrC was boronized by B4C to generate ZrC–ZrB2 composite powder with different compositions. Using this method, five composite powders with different molar ratios of ZrC and ZrB2 (100ZrC, 75ZrC–25ZrB2, 50ZrC–50ZrB2, 25ZrC–75ZrB2, and 100ZrB2) were prepared. When the temperature of boronization and decarburization process was 1473 K, the particle size of product was only tens of nanometres. Finally, the oxidation characteristics of different composite powders were investigated through oxidation experiments. The oxidation resistance of ZrC–ZrB2 composite powder continued to increase as the content of ZrB2 increased.

    • loading
    • [1]
      W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y.C. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Inc., Hoboken, 2014.
      [2]
      C. Nachiappan, L. Rangaraj, C. Divakar, and V. Jayaram, Synthesis and densification of monolithic zirconium carbide by reactive hot pressing, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1341. doi: 10.1111/j.1551-2916.2010.03608.x
      [3]
      D.L.J. Engberg, L. Tengdelius, H. Högberg, M. Thuvander, and L. Hultman, Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2, Mater. Charact., 156(2019), art. No. 109871. doi: 10.1016/j.matchar.2019.109871
      [4]
      A.W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, Springer, Dordrecht, 1997.
      [5]
      G. Effenberg and S. Ilyenko, Ternary Alloy Systems, Springer, Heidelberg, 2009.
      [6]
      F. Adibpur, S.A. Tayebifard, M. Zakeri, and M.S. Asl, Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites, Ceram. Int., 46(2020), No. 1, p. 156. doi: 10.1016/j.ceramint.2019.08.243
      [7]
      F.P. Li, Z.L. Xu, K. Zhao, and Y.F. Tang, ZrB2–ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction: Processing, phase evolution and tensile property, J. Alloys Compd., 771(2019), p. 456. doi: 10.1016/j.jallcom.2018.08.304
      [8]
      M.S. Asl, B. Nayebi, S. Parvizi, Z. Ahmadi, N. Parvin, M. Shokouhimehr, and M. Mohammadi, Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors, J. Sci: Adv. Mater. Devices, 6(2021), No. 1, p. 42. doi: 10.1016/j.jsamd.2020.09.014
      [9]
      D.L. Hu, H. Gu, J. Zou, Q. Zheng, and G.J. Zhang, Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2–SiC–MC ceramics (M = Nb, Hf, Ta, W), J. Materiomics, 7(2021), No. 1, p. 69. doi: 10.1016/j.jmat.2020.07.005
      [10]
      I. Akin and G. Goller, Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites, J. Ceram. Soc. Jpn., 120(2012), No. 1400, p. 143. doi: 10.2109/jcersj2.120.143
      [11]
      A. Rezapour and Z. Balak, Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite, Mater. Chem. Phys., 241(2020), art. No. 122284. doi: 10.1016/j.matchemphys.2019.122284
      [12]
      Z.L. Xu, K. Zhao, F.P. Li, Y.S. Huo, and Y.F. Tang, The oxidation behavior of ZrB2–ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction, Ceram. Int., 46(2020), No. 8, p. 10409. doi: 10.1016/j.ceramint.2020.01.039
      [13]
      Y. Kubota, M. Yano, R. Inoue, Y. Kogo, and K. Goto, Oxidation behavior of ZrB2–SiC–ZrC in oxygen-hydrogen torch environment, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1095. doi: 10.1016/j.jeurceramsoc.2017.11.024
      [14]
      L. Liu, H.J. Li, W. Feng, X.H. Shi, K.Z. Li, and L.J. Guo, Ablation in different heat fluxes of C/C composites modified by ZrB2–ZrC and ZrB2–ZrC–SiC particles, Corros. Sci., 74(2013), p. 159. doi: 10.1016/j.corsci.2013.04.038
      [15]
      L. Xu, C.Z. Huang, H.L. Liu, B. Zou, H.T. Zhu, G.L. Zhao, and J. Wang, In situ synthesis of ZrB2–ZrCx ceramic tool materials toughened by elongated ZrB2 grains, Mater. Des., 49(2013), p. 226. doi: 10.1016/j.matdes.2013.01.062
      [16]
      Y. Wang, G.H. Zhang, Y.D. Wu, and X.B. He, Preparation of CaB6 powder via calciothermic reduction of boron carbide, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 37. doi: 10.1007/s12613-019-1873-y
      [17]
      Y. Wang, Y.D. Wu, K.H. Wu, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 831. doi: 10.1007/s12613-019-1794-9
      [18]
      X. Lv, Z.J. Zhan, H.Y. Cao, and C.H. Guo, Microstructure and properties of the laser cladded in-situ ZrB2–ZrC/Cu composite coatings on copper substrate, Surf. Coat. Technol., 396(2020), art. No. 125937. doi: 10.1016/j.surfcoat.2020.125937
      [19]
      T.G. Guan, M.Q. Cao, K. Xie, X. Lv, and Y.L. Tan, Microstructure and wear resistance of ZrC–ZrB2 /Ni composite coatings prepared by plasma transferred arc cladding, Mater. Res., 22(2019), No. 3, art. No. e20180781. doi: 10.1590/1980-5373-mr-2018-0781
      [20]
      J.X. Hou, J. Fan, H.J. Yang, Z. Wang, and J.W. Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1363. doi: 10.1007/s12613-020-1967-6
      [21]
      J.Y. Xu, B.L. Zou, S.M. Zhao, Y. Hui, W.Z. Huang, X. Zhou, Y. Wang, X.L. Cai, and X.Q. Cao, Fabrication and properties of ZrC–ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders, Ceram. Int., 40(2014), No. 10, p. 15537. doi: 10.1016/j.ceramint.2014.07.029
      [22]
      N. Çömez, C. Çivi, and H. Durmuş, Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1585. doi: 10.1007/s12613-019-1866-x
      [23]
      J.D. Jarman, W.G. Fahrenholtz, G.E. Hilmas, J.L. Watts, and D.S. King, Characterization of fusion welded ceramics in the SiC–ZrB2–ZrC system, J. Eur. Ceram. Soc., 41(2021), No. 4, p. 2255. doi: 10.1016/j.jeurceramsoc.2020.10.067
      [24]
      L.Y. Bai, F.L. Yuan, Z. Fang, Q. Wang, Y.G. Ouyang, H.C. Jin, J.P. He, W.F. Liu, and Y.L. Wang, RF thermal plasma synthesis of ultrafine ZrB2–ZrC composite powders, Nanomaterials, 10(2020), No. 12, art. No. 2497. doi: 10.3390/nano10122497
      [25]
      S.G. Chen, Y.Z. Gou, H. Wang, K. Jian, and J. Wang, Preparation and characterization of high-temperature resistant ZrC–ZrB2 nanocomposite ceramics derived from single-source precursor, Mater. Des., 117(2017), p. 257. doi: 10.1016/j.matdes.2016.12.041
      [26]
      T. Tsuchida and S. Yamamoto, Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures, J. Eur. Ceram. Soc., 24(2004), No. 1, p. 45. doi: 10.1016/S0955-2219(03)00120-1
      [27]
      Y. Wang, Y.D. Wu, B. Peng, K.H. Wu, and G.H. Zhang, A universal method for the synthesis of refractory metal diborides, Ceram. Int., 47(2021), No. 10, p. 14107. doi: 10.1016/j.ceramint.2021.01.281
      [28]
      K.H. Wu, Y. Jiang, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Synthesis of high purity nano-sized transition-metal carbides, J. Mater. Res. Technol., 9(2020), No. 5, p. 11778. doi: 10.1016/j.jmrt.2020.08.053
      [29]
      W.M. Guo, G.J. Zhang, Y.M. Kan, and P.L. Wang, Oxidation of ZrB2 powder in the temperature range of 650–800°C, J. Alloys Compd., 471(2009), No. 1-2, p. 502. doi: 10.1016/j.jallcom.2008.04.006

    Catalog


    • /

      返回文章
      返回