留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(19)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  9448
  • HTML全文浏览量:  4069
  • PDF下载量:  700
  • 被引次数: 0
Maohang Zhang, Baicheng Zhang, Yaojie Wen, and Xuanhui Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 369-388. https://doi.org/10.1007/s12613-021-2331-1
Cite this article as:
Maohang Zhang, Baicheng Zhang, Yaojie Wen, and Xuanhui Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 369-388. https://doi.org/10.1007/s12613-021-2331-1
引用本文 PDF XML SpringerLink
特约综述封面文章

选区激光熔化制备镍基高温合金研究进展

  • 通讯作者:

    张百成    E-mail: zhangbc@ustb.edu.cn

    曲选辉    E-mail: quxh@ustb.edu.cn

文章亮点

  • (1) 以4种牌号为例,对比归纳了SLM制备固溶强化与沉淀强化两类镍基高温合金的共性问题和个性难点。
  • (2) 综合论述了SLM制备过程与后处理过程中,材料组织和力学性能的演变规律。
  • (3) 以航空工业等领域的现实需求为参照,对SLM制备镍基高温合金的发展路线提出了有价值的展望。
  • 选区激光熔化技术(SLM,selective laser melting)是目前金属增材制造领域最具潜力的工艺之一,可同时保证打印构件的高几何设计自由度、机械强度和制造精度,已广泛应于多种金属材料的加工。镍基高温合金是航空航天等领域的关键材料,在高温下仍旧可以保证优良的力学性能,但是由于其本身的强度、硬度较大,传统的加工方式周期长、成本高,愈发不能满足现代工业需求。因此,选区激光熔化迅速引领了镍基高温合金制备领域的技术变革。本文选取了CM247LC、Inconel 718、Inconel 626和Hastelloy X四种服役温度不同的镍基高温合金为对象,综述了近年来选区激光熔化制备镍基高温合金的研究进展。本文系统介绍了各种材料的激光工艺参数和热处理制度,并重点讨论了激光辐照与热处理工程中组织演变规律及其对力学性能的影响。同时,结合最新的工业进展,对选区激光熔化制备镍基高温合金的实际应用做了简要介绍。最后,对当前的技术发展进行了总结并提出了展望。

  • Invited Review

    Research progress on selective laser melting processing for nickel-based superalloy

    + Author Affiliations
    • Selective laser melting (SLM), an additive manufacturing process mostly applied in the metal material field, can fabricate complex-shaped metal objects with high precision. Nickel-based superalloy exhibits excellent mechanical properties at elevated temperatures and plays an important role in the aviation industry. This paper emphasizes the research of SLM processed Inconel 718, Inconel 625, CM247LC, and Hastelloy X, which are typical alloys with different strengthening mechanisms and operating temperatures. The strengthening mechanism and phase change evolution of different nickel-based superalloys under laser irradiation are discussed. The influence of laser parameters and the heat-treatment process on mechanical properties of SLM nickel-based superalloys are systematically introduced. Moreover, the attractive industrial applications of SLM nickel-based superalloy and printed components are presented. Finally, the prospects for nickel-based superalloy materials for SLM technology are presented.

    • loading
    • [1]
      R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.
      [2]
      S.L. Chittewar and N.G. Patil, Surface integrity of conventional and additively manufactured nickel superalloys: A review, Mater. Today: Proc., 44(2021), p. 701. doi: 10.1016/j.matpr.2020.10.614
      [3]
      S. Sanchez, P. Smith, Z.K. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, and A.T. Clare, Powder bed fusion of nickel-based superalloys: A review, Int. J. Mach. Tools Manuf., 165(2021), art. No. 103729. doi: 10.1016/j.ijmachtools.2021.103729
      [4]
      Rolls-Royce, The Jet Engine, The Technical Publications Department, Derby, 1992.
      [5]
      N.A. Cumpsty, Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines, Cambridge University Press, Cambridge, 1997.
      [6]
      H.Y. Wu, D. Zhang, B.B. Yang, C. Chen, Y.P. Li, K.C. Zhou, L. Jiang, and R.P. Liu, Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting, J. Mater. Sci. Technol., 36(2020), p. 7. doi: 10.1016/j.jmst.2019.08.007
      [7]
      X.P. Du and J.C. Zhao, First measurement of the full elastic constants of Ni-based superalloy René 88DT, Scripta Mater., 152(2018), p. 24. doi: 10.1016/j.scriptamat.2018.03.044
      [8]
      S.H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.P. Li, Y.J. Cui, and A. Chiba, Electron beam additive manufacturing of Inconel 718 alloy rods: Impact of build direction on microstructure and high-temperature tensile properties, Addit. Manuf., 23(2018), p. 457.
      [9]
      W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform., 23(2014), No. 6, p. 1917. doi: 10.1007/s11665-014-0958-z
      [10]
      J.J. Lewandowski and M. Seifi, Metal additive manufacturing: A review of mechanical properties, Annu. Rev. Mater. Res., 46(2016), No. 1, p. 151. doi: 10.1146/annurev-matsci-070115-032024
      [11]
      H.Y. Chen, D.D. Gu, Q. Ge, X.Y. Shi, H.M. Zhang, R. Wang, H. Zhang, and K. Kosiba, Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 462. doi: 10.1007/s12613-020-2133-x
      [12]
      Y.W. Luo, M.Y. Wang, J.G. Tu, Y. Jiang, and S.Q. Jiao, Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1844. doi: 10.1007/s12613-020-2212-z
      [13]
      L.N. Carter, C. Martin, P.J. Withers, and M.M. Attallah, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd., 615(2014), p. 338. doi: 10.1016/j.jallcom.2014.06.172
      [14]
      W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, and X.L. Tian, Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review, Prog. Mater. Sci., 104(2019), p. 330. doi: 10.1016/j.pmatsci.2019.04.006
      [15]
      I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric analysis of the selective laser melting process, Appl. Surf. Sci., 253(2007), No. 19, p. 8064. doi: 10.1016/j.apsusc.2007.02.088
      [16]
      D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev., 57(2012), No. 3, p. 133. doi: 10.1179/1743280411Y.0000000014
      [17]
      D. Wang, Z.Y. Qian, W.H. Dou, Y.Q. Yang, S. Li, Y.C. Bai, and Z.F. Xiao, Research progress on selective laser melting of nickel based superalloy, Addit. Manuf. Technol., 61(2018), No. 10, p. 49.
      [18]
      R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys, Metall. Mater. Trans. A, 40(2009), No. 7, p. 1588. doi: 10.1007/s11661-009-9858-5
      [19]
      K. Kunze, T. Etter, J. Grässlin, and V. Shklover, Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A, 620(2015), p. 213. doi: 10.1016/j.msea.2014.10.003
      [20]
      P. Kanagarajah, F. Brenne, T. Niendorf, and H.J. Maier, Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading, Mater. Sci. Eng. A, 588(2013), p. 188. doi: 10.1016/j.msea.2013.09.025
      [21]
      Z. Chen, S.G. Chen, Z.Y. Wei, L.J. Zhang, P. Wei, B.H. Lu, S.Z. Zhang, and Y. Xiang, Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting, Prog. Nat. Sci., 28(2018), No. 4, p. 496. doi: 10.1016/j.pnsc.2018.07.001
      [22]
      Z.H. Jiao, L.M. Lei, H.C. Yu, F. Xu, R.D. Xu, and X.R. Wu, Experimental evaluation on elevated temperature fatigue and tensile properties of one selective laser melted nickel based superalloy, Int. J. Fatigue, 121(2019), p. 172. doi: 10.1016/j.ijfatigue.2018.12.024
      [23]
      W.P. Huang, H.C. Yu, J. Yin, Z.M. Wang, and X.Y. Zeng, Microstructure and mechanical properties of k4202 cast nickel base superalloy fabricated by selective laser melting, Acta Metall. Sin., 52(2016), No. 9, p. 1089.
      [24]
      S.E. Atabay, O. Sanchez-Mata, J.A. Muñiz-Lerma, R. Gauvin, and M. Brochu, Microstructure and mechanical properties of rene 41 alloy manufactured by laser powder bed fusion, Mater. Sci. Eng. A, 773(2020), art. No. 138849. doi: 10.1016/j.msea.2019.138849
      [25]
      Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123. doi: 10.1007/s12613-019-1949-8
      [26]
      L.N. Carter, M.M. Attallah, and R.C. Reed, Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking, [in] E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, eds., Superalloys 2012, John Wiley & Sons, Inc., Hoboken, 2012, p. 577.
      [27]
      K. Harris, G.L. Erickson, and R.E. Schwer, MAR M 247 derivations - CM 247 LC DS alloy and CMSX single crystal alloys: Properties & performance, [in] Proceedings of the fifth International Symposium on Superalloys, Warrendale, PA, 1984, p. 221.
      [28]
      M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, and G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Sci. Technol. Weld. Joining, 9(2004), No. 1, p. 13. doi: 10.1179/136217104225017099
      [29]
      S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I.A. Ashcroft, and A. Clare, Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys, Addit. Manuf., 15(2017), p. 113.
      [30]
      R.P. Turner, C. Panwisawas, Y. Lu, I. Dhiman, H.C. Basoalto, and J.W. Brooks, Neutron tomography methods applied to a nickel-based superalloy additive manufacture build, Mater. Lett., 230(2018), p. 109. doi: 10.1016/j.matlet.2018.07.112
      [31]
      N. Kalentics, N. Sohrabi, H.G. Tabasi, S. Griffiths, J. Jhabvala, C. Leinenbach, A. Burn, and R.E. Logé, Healing cracks in selective laser melting by 3D laser shock peening, Addit. Manuf., 30(2019), art. No. 100881.
      [32]
      G. Bidron, A. Doghri, T. Malot, F. Fournier-Dit-chabert, M. Thomas, and P. Peyre, Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating, J. Mater. Process. Technol., 277(2020), art. No. 116461. doi: 10.1016/j.jmatprotec.2019.116461
      [33]
      X.Q. Wang, L.N. Carter, B. Pang, M.M. Attallah, and M.H. Loretto, Microstructure and yield strength of SLM-fabricated CM247LC Ni-superalloy, Acta Mater., 128(2017), p. 87. doi: 10.1016/j.actamat.2017.02.007
      [34]
      V.D. Divya, R. Muñoz-Moreno, O.M.D.M. Messé, J.S. Barnard, S. Baker, T. Illston, and H.J. Stone, Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment, Mater. Charact., 114(2016), p. 62. doi: 10.1016/j.matchar.2016.02.004
      [35]
      R. Muñoz-Moreno, V.D. Divya, S.L. Driver, O.M.D.M. Messé, T. Illston, S. Baker, M.A. Carpenter, and H.J. Stone, Effect of heat treatment on the microstructure, texture and elastic anisotropy of the nickel-based superalloy CM247LC processed by selective laser melting, Mater. Sci. Eng. A, 674(2016), p. 529. doi: 10.1016/j.msea.2016.06.075
      [36]
      J.H. Boswell, D. Clark, W. Li, and M.M. Attallah, Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy, Mater. Des., 174(2019), art. No. 107793. doi: 10.1016/j.matdes.2019.107793
      [37]
      B.C. Zhang, X. Lee, J.M. Bai, J.F. Guo, P. Wang, C.N. Sun, M. Nai, G.J. Qi, and J. Wei, Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Mater. Des., 116(2017), p. 531. doi: 10.1016/j.matdes.2016.11.103
      [38]
      SLM solutions [2020-12-11]. https://www.slm-solutions.com/industries/aerospace-and-defense/
      [39]
      H.H. Yang, L. Meng, S.C. Luo, and Z.M. Wang, Microstructural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power, J. Alloys Compd., 828(2020), art. No. 154473. doi: 10.1016/j.jallcom.2020.154473
      [40]
      M. Amirjan and H. Sakiani, Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy, Int. J. Adv. Manuf. Technol., 103(2019), No. 5-8, p. 1769. doi: 10.1007/s00170-019-03545-0
      [41]
      V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, and A.V. Orlov, The effect of layer thickness at selective laser melting, Procedia Eng., 174(2017), p. 126. doi: 10.1016/j.proeng.2017.01.179
      [42]
      X.L. Yao, S.K. Moon, B.Y. Lee, and G.J. Bi, Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting, Int. J. Precis. Eng. Manuf., 18(2017), No. 12, p. 1693. doi: 10.1007/s12541-017-0197-y
      [43]
      F. Caiazzo, V. Alfieri, and G. Casalino, On the relevance of volumetric energy density in the investigation of Inconel 718 laser powder bed fusion, Materials, 13(2020), No. 3, art. No. 538. doi: 10.3390/ma13030538
      [44]
      X. Li, J.J. Shi, C.H. Wang, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, and G.F. Chen, Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting, J. Alloys Compd., 764(2018), p. 639. doi: 10.1016/j.jallcom.2018.06.112
      [45]
      D.H. Smith, J. Bicknell, L. Jorgensen, B.M. Patterson, N.L. Cordes, I. Tsukrov, and M. Knezevic, Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718, Mater. Charact., 113(2016), p. 1. doi: 10.1016/j.matchar.2016.01.003
      [46]
      S.C. Luo, W.P. Huang, H.H. Yang, J.J. Yang, Z.M. Wang, and X.Y. Zeng, Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments, Addit. Manuf., 30(2019), art. No. 100875.
      [47]
      B. Izquierdo, S. Plaza, J.A. Sánchez, I. Pombo, and N. Ortega, Numerical prediction of heat affected layer in the EDM of aeronautical alloys, Appl. Surf. Sci., 259(2012), p. 780. doi: 10.1016/j.apsusc.2012.07.124
      [48]
      L.L. Parimi, R.G. A, D. Clark, and M.M. Attallah, Microstructural and texture development in direct laser fabricated IN718, Mater. Charact., 89(2014), p. 102. doi: 10.1016/j.matchar.2013.12.012
      [49]
      S. Holland, X.Q. Wang, X.Y. Fang, Y.B. Guo, F. Yan, and L. Li, Grain boundary network evolution in Inconel 718 from selective laser melting to heat treatment, Mater. Sci. Eng. A, 725(2018), p. 406. doi: 10.1016/j.msea.2018.04.045
      [50]
      W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen, Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment, Mater. Sci. Eng. A, 689(2017), p. 220. doi: 10.1016/j.msea.2017.02.062
      [51]
      K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater., 60(2012), No. 5, p. 2229. doi: 10.1016/j.actamat.2011.12.032
      [52]
      J. Strößner, M. Terock, and U. Glatzel, Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM), Adv. Eng. Mater., 17(2015), No. 8, p. 1099. doi: 10.1002/adem.201500158
      [53]
      B. Song, S.J. Dong, Q. Liu, H.L. Liao, and C. Coddet, Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior, Mater. Des., 54(2014), p. 727. doi: 10.1016/j.matdes.2013.08.085
      [54]
      M. Ni, S.C. Liu, C. Chen, R.D. Li, X.Y. Zhang, and K.C. Zhou, Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting, Mater. Sci. Eng. A, 748(2019), p. 275. doi: 10.1016/j.msea.2019.01.109
      [55]
      W.P. Huang, J.J. Yang, H.H. Yang, G.Y. Jing, Z.M. Wang, and X.Y. Zeng, Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties, Mater. Sci. Eng. A, 750(2019), p. 98. doi: 10.1016/j.msea.2019.02.046
      [56]
      R. Seede, A. Mostafa, V. Brailovski, M. Jahazi, and M. Medraj, Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: Structure, texture, and phases, J. Manuf. Mater. Process., 2(2018), No. 2, art. No. 30.
      [57]
      M. Seifi, A.A. Salem, D.P. Satko, R. Grylls, and J.J. Lewandowski, Effects of post-processing on microstructure and mechanical properties of SLM-processed IN-718, [in] E. Ott, X.B. Liu, J. Andersson, Z.N. Bi, K. Bockenstedt, I. Dempster, J. Groh, K. Heck, P. Jablonski, M. Kaplan, D. Nagahama, and C. Sudbrack, eds., Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, Pittsburgh, 2018, p. 515.
      [58]
      W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, and K.P. Hoyer, Hot isostatic pressing of IN718 components manufactured by selective laser melting, Addit. Manuf., 13(2017), p. 93.
      [59]
      E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski, Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting, Mater. Sci. Eng. A, 639(2015), p. 647. doi: 10.1016/j.msea.2015.05.035
      [60]
      M.E. Aydinöz, F. Brenne, M. Schaper, C. Schaak, W. Tillmann, J. Nellesen, and T. Niendorf, On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading, Mater. Sci. Eng. A, 669(2016), p. 246. doi: 10.1016/j.msea.2016.05.089
      [61]
      D.Y. Deng, R.L. Peng, H. Brodin, and J. Moverare, Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments, Mater. Sci. Eng. A, 713(2018), p. 294. doi: 10.1016/j.msea.2017.12.043
      [62]
      T. Trosch, J. Strößner, R. Völkl, and U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting, Mater. Lett., 164(2016), p. 428. doi: 10.1016/j.matlet.2015.10.136
      [63]
      C.H. Pei, W. Zeng, and H. Yuan, A damage evolution model based on micro-structural characteristics for an additive manufactured superalloy under monotonic and cyclic loading conditions, Int. J. Fatigue, 131(2020), art. No. 105279. doi: 10.1016/j.ijfatigue.2019.105279
      [64]
      V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, and L. Alzina, Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting, Mater. Des., 131(2017), p. 12. doi: 10.1016/j.matdes.2017.05.065
      [65]
      I.T. Ho, Y.T. Chen, A.C. Yeh, C.P. Chen, and K.K. Jen, Microstructure evolution induced by inoculants during the selective laser melting of IN718, Addit. Manuf., 21(2018), p. 465.
      [66]
      B.C. Zhang, P. Wang, Y. Chew, Y.J. Wen, M.H. Zhang, P. Wang, G.J. Bi, and J. Wei, Mechanical properties and microstructure evolution of selective laser melting Inconel 718 along building direction and sectional dimension, Mater. Sci. Eng. A, 794(2020), art. No. 139941. doi: 10.1016/j.msea.2020.139941
      [67]
      C.H. Pei, D. Shi, H. Yuan, and H.X. Li, Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718, Mater. Sci. Eng. A, 759(2019), p. 278. doi: 10.1016/j.msea.2019.05.007
      [68]
      C. Li, Y.B. Guo, and J.B. Zhao, Interfacial phenomena and characteristics between the deposited material and substrate in selective laser melting Inconel 625, J. Mater. Process. Technol., 243(2017), p. 269. doi: 10.1016/j.jmatprotec.2016.12.033
      [69]
      E. Pavithra and V.S. Senthil Kumar, Microstructural evolution of hydroformed Inconel 625 bellows, J. Alloys Compd., 669(2016), p. 199. doi: 10.1016/j.jallcom.2016.02.011
      [70]
      H.B. Zhang, Progress of Inconel 625 alloy abroad, Spec. Steel Technol., 3(2000), p. 69.
      [71]
      C. Li, R. White, X.Y. Fang, M. Weaver, and Y.B. Guo, Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment, Mater. Sci. Eng. A, 705(2017), p. 20. doi: 10.1016/j.msea.2017.08.058
      [72]
      C. Pleass and S. Jothi, Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by selective laser melting, Addit. Manuf., 24(2018), p. 419.
      [73]
      I. Koutiri, E. Pessard, P. Peyre, O. Amlou, and T. De Terris, Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts, J. Mater. Process. Technol., 255(2018), p. 536. doi: 10.1016/j.jmatprotec.2017.12.043
      [74]
      S. Li, Q.S. Wei, Y.S. Shi, Z.C. Zhu, and D.Q. Zhang, Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting, J. Mater. Sci. Technol., 31(2015), No. 9, p. 946. doi: 10.1016/j.jmst.2014.09.020
      [75]
      J. Nguejio, F. Szmytka, S. Hallais, A. Tanguy, S. Nardone, and M. Godino Martinez, Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625, Mater. Sci. Eng. A, 764(2019), art. No. 138214. doi: 10.1016/j.msea.2019.138214
      [76]
      X.Y. Fang, H.Q. Li, M. Wang, C. Li, and Y.B. Guo, Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy, Mater. Charact., 143(2018), p. 182. doi: 10.1016/j.matchar.2018.02.008
      [77]
      D.B. Witkin, P. Adams, and T. Albright, Microstructural evolution and mechanical behavior of nickel-based superalloy 625 made by selective laser melting, [in] Proceedings Volume 9353, Laser 3D Manufacturing II, San Francisco, 2015.
      [78]
      X.A. Hu, G.L. Zhao, Y. Jiang, X.F. Ma, F.C. Liu, J. Huang, and C.L. Dong, Experimental investigation on the LCF behavior affected by manufacturing defects and creep damage of one selective laser melting nickel-based superalloy at 815 °C, Acta Metall. Sin. Engl. Lett., 33(2020), No. 4, p. 514. doi: 10.1007/s40195-019-00986-0
      [79]
      D.B. Witkin, T.V. Albright, and D.N. Patel, Empirical approach to understanding the fatigue behavior of metals made using additive manufacturing, Metall. Mater. Trans. A, 47(2016), No. 8, p. 3823. doi: 10.1007/s11661-016-3501-z
      [80]
      I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder, Appl. Surf. Sci., 254(2007), No. 4, p. 980. doi: 10.1016/j.apsusc.2007.08.046
      [81]
      M. Leary, M. Mazur, H. Williams, E. Yang, A. Alghamdi, B. Lozanovski, X.Z. Zhang, D. Shidid, L. Farahbod-Sternahl, G. Witt, I. Kelbassa, P. Choong, M. Qian, and M. Brandt, Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes, Mater. Des., 157(2018), p. 179. doi: 10.1016/j.matdes.2018.06.010
      [82]
      K. Mumtaz and N. Hopkinson, Selective laser melting of Inconel 625 using pulse shaping, Rapid Prototyp. J., 16(2010), No. 4, p. 248. doi: 10.1108/13552541011049261
      [83]
      Y.L. Li, L.M. Lei, H.P. Hou, and Y.L. He, Effect of heat processing on microstructures and tensile properties of selective laser melting Hastelloy X alloy, J. Mater. Eng., 47(2019), No. 5, p. 100.
      [84]
      O. Sanchez-Mata, X.L. Wang, J. Muñiz-Lerma, M. Attarian Shandiz, R. Gauvin, and M. Brochu, Fabrication of crack-free nickel-based superalloy considered non-weldable during laser powder bed fusion, Materials, 11(2018), No. 8, art. No. 1288. doi: 10.3390/ma11081288
      [85]
      Germany EOS (Electro Optical Systems) [2021-01-08]. https://www.eos.info/de
      [86]
      D. Tomus, P.A. Rometsch, M. Heilmaier, and X.H. Wu, Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting, Addit. Manuf., 16(2017), p. 65.
      [87]
      M.L. Montero-Sistiaga, Z.Z. Liu, L. Bautmans, S. Nardone, G. Ji, J.P. Kruth, J. Van Humbeeck, and K. Vanmeensel, Effect of temperature on the microstructure and tensile properties of micro-crack free Hastelloy X produced by selective laser melting, Addit. Manuf., 31(2020), art. No. 100995.
      [88]
      N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach, Acta Mater., 94(2015), p. 59. doi: 10.1016/j.actamat.2015.04.035
      [89]
      D. Tomus, T. Jarvis, X. Wu, J. Mei, P. Rometsch, E. Herny, J.F. Rideau, and S. Vaillant, Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting, Phys. Procedia, 41(2013), p. 823. doi: 10.1016/j.phpro.2013.03.154
      [90]
      M.L. Montero-Sistiaga, S. Pourbabak, J. Van Humbeeck, D. Schryvers, and K. Vanmeensel, Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting), Mater. Des., 165(2019), art. No. 107598. doi: 10.1016/j.matdes.2019.107598
      [91]
      F. Calignano and P. Minetola, Influence of process parameters on the porosity, accuracy, roughness, and support structures of Hastelloy X produced by laser powder bed fusion, Materials, 12(2019), No. 19, art. No. 3178. doi: 10.3390/ma12193178
      [92]
      Y.L. Li, H. Qi, H.P. Hou, and L.M. Lei, Effects of hot isostatic pressing on microstructure and mechanical properties of Hastelloy X samples produced by selective laser melting, [in] Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017), Beijing, 2017, p. 31.
      [93]
      D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, and X.H. Wu, Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting, Mater. Sci. Eng. A, 667(2016), p. 42. doi: 10.1016/j.msea.2016.04.086
      [94]
      D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, J.Z. Yao, C. Man, L. Wang, K. Xiao, and X.G. Li, Anisotropic response in mechanical and corrosion properties of Hastelloy X fabricated by selective laser melting, Constr. Build. Mater., 221(2019), p. 720. doi: 10.1016/j.conbuildmat.2019.06.132
      [95]
      Y. Tian, D. Tomus, A.J. Huang, and X.H. Wu, Experimental and statistical analysis on process parameters and surface roughness relationship for selective laser melting of Hastelloy X, Rapid Prototyp. J., 25(2019), No. 7, p. 1309. doi: 10.1108/RPJ-01-2019-0013
      [96]
      Q.Q. Han, Y.C. Gu, S. Soe, F. Lacan, and R. Setchi, Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing, Opt. Laser Technol., 124(2020), art. No. 105984. doi: 10.1016/j.optlastec.2019.105984
      [97]
      H.M. Zhang, D.D. Gu, C.L. Ma, M. Guo, J.K. Yang, H. Zhang, H.Y. Chen, C.P. Li, K. Svynarenko, and K. Kosiba, Understanding tensile and creep properties of WC reinforced nickel-based composites fabricated by selective laser melting, Mater. Sci. Eng. A, 802(2021), art. No. 140431. doi: 10.1016/j.msea.2020.140431
      [98]

    Catalog


    • /

      返回文章
      返回