留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(12)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1407
  • HTML全文浏览量:  595
  • PDF下载量:  76
  • 被引次数: 0
Zixiang Cui, Lu Zhang, Yongqiang Xue, Ya’nan Feng, Mengying Wang, Jiaojiao Chen, Boteng Ji, Chenyu Wang,  and Yidi Xue, Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2221-2231. https://doi.org/10.1007/s12613-021-2332-0
Cite this article as:
Zixiang Cui, Lu Zhang, Yongqiang Xue, Ya’nan Feng, Mengying Wang, Jiaojiao Chen, Boteng Ji, Chenyu Wang,  and Yidi Xue, Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2221-2231. https://doi.org/10.1007/s12613-021-2332-0
引用本文 PDF XML SpringerLink
研究论文

粒度和形貌对纳米CeO2吸附和光催化动力学参数的影响

  • 通讯作者:

    崔子祥    E-mail: czxlw2018@163.com

文章亮点

  • (1) 采用水热法制备了不同粒度的球形和线形纳米CeO2
  • (2) 总结了粒度和形貌对纳米CeO2光催化动力学的影响规律。
  • (3) 提出了纳米材料的普遍化光催化动力学机理。
  • 纳米材料因其优异的光催化性能而被广泛应用于许多领域。而其性能与催化动力学密切相关,但粒度和形貌对纳米材料光催化动力学的影响规律以及光催化动力学机理尚不完全清楚。本文制备了不同形貌和粒度的纳米CeO2,测定了吸附和光催化降解的动力学参数,并讨论了形貌和粒度对其吸附动力学、光催化动力学和光催化机理的影响。结果表明,粒度和形貌对纳米材料的光催化动力学有显著的影响。随着粒度的减小,相同形貌的纳米CeO2的吸附率和吸附速率常数增加,光催化降解率和降解速率常数也增加;球形纳米CeO2的吸附率,吸附速率常数,光催化降解率和光催化降解速率常数都大于线形纳米CeO2的;且吸附速率常数的对数和光降解速率常数的对数分别与直径的倒数呈现较好的线性关系;但形貌和粒度对整个光催化过程的动力学级数和机理没有影响。并提出了纳米材料光催化动力学的机理,推导了机理速率方程。纳米材料的光催化动力学机理分为溶液中的被降解物在纳米颗粒表面的吸附、被吸附物质在纳米颗粒表面的光催化降解反应和反应产物的解吸三个基元步骤,其中光降解产物的解吸为光催化动力学的控制步骤,并且光催化降解的动力学级数均为1级。上述纳米材料的光催化降解动力学机理是普遍化的,也就是说,所有的纳米材料均有相同的光催化动力学机理和动力学级数。我们提出的纳米材料的普遍化光催化动力学机理以及粒度和形貌对纳米CeO2光催化动力学的影响规律,可为其它纳米材料在光催化领域的研究和应用提供重要的指导和参考。
  • Research Article

    Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2

    + Author Affiliations
    • Nanomaterials have been widely applied to many fields because of their excellent photocatalytic performance. The performance is closely related to the catalytic kinetics, but it is not completely clear about the influencing regularities of shape and particle size on the photocatalytic kinetics of nanomaterials and the photocatalytic kinetic mechanism. In this paper, nano-CeO2 with different shapes and particle sizes were prepared, the kinetic parameters of adsorption and photocatalytic degradation were determined, and the effects of shape and particle size on the kinetics of adsorption and photocatalysis and photocatalytic mechanism were discussed. The results show that the shape and particle size have significant influences. With the decreases of diameter, the performances of adsorption and photocatalysis of nano-CeO2 are improved; and these performances of spherical nano-CeO2 are greater than those of linear nano-CeO2. The shape and particle size have no effects on the kinetic order and mechanism of the whole photocatalytic process. Then a generalized mechanism of photocatalytic kinetics of nanomaterials was proposed and the mechanism rate equation was derived. Finally, the conclusion can be drawn: the desorption of photodegradation products is the control step of photocatalytic kinetics, and the kinetic order of photocatalytic degradation reaction is 1. The mechanism is universal and all nanomaterials have the same photocatalytic kinetic mechanism and order.
    • loading
    • [1]
      S. Tsunekawa, R. Sahara, Y. Kawazoe, and K. Ishikawa, Lattice relaxation of monosize CeO2−x nanocrystalline particles, Appl. Surf. Sci., 152(1999), No. 1-2, p. 53. doi: 10.1016/S0169-4332(99)00298-6
      [2]
      L. Zhang, H.C. Teng, J.C. Zhou, Y.M. Sun, N.X. Li, M.C. Liu, and D.W. Jing, Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property, Prog. Nat. Sci. Mater. Int., 28(2018), No. 2, p. 235. doi: 10.1016/j.pnsc.2018.02.008
      [3]
      F.P. Yang, Z.Y. Zhang, Y.N. Wang, M.Z. Xu, W. Zhao, J.F. Yan, and C. Chen, Facile synthesis of nano-MoS2 and its visible light photocatalytic property, Mater. Res. Bull., 87(2017), p. 119. doi: 10.1016/j.materresbull.2016.11.029
      [4]
      B.L. Wang, F.C. Yu, H.S. Li, T.Y. Song, D.M. Nan, L. He, H.Y. Duan, S. Wang, and X.X. Tang, The preparation and photocatalytic properties of Na doped ZnO porous film composited with Ag nano-sheets, Physica E, 117(2020), art. No. 113712. doi: 10.1016/j.physe.2019.113712
      [5]
      S.W. Cao and Y.J. Zhu, Hierarchically nanostructured α-Fe2O3 hollow spheres: Preparation, growth mechanism, photocatalytic property, and application in water treatment, J. Phys. Chem. C, 112(2008), No. 16, p. 6253. doi: 10.1021/jp8000465
      [6]
      A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, and M. Rafatullah, Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater, RSC Adv., 5(2015), No. 39, p. 30801. doi: 10.1039/C4RA16959J
      [7]
      Z.Q. Cai, Y.M. Sun, W. Liu, F. Pan, P.Z. Sun, and J. Fu, An overview of nanomaterials applied for removing dyes from wastewater, Environ. Sci. Pollut. Res., 24(2017), No. 19, p. 15882. doi: 10.1007/s11356-017-9003-8
      [8]
      B. Kilic, E.B. Simsek, S. Turkdogan, P. Demircivi, Ö. Tuna, S.P. Mucur, and D. Berek, Carbon nanofiber based CuO nanorod counter electrode for enhanced solar cell performance and adsorptive photocatalytic activity, J. Nanoparticle Res., 22(2020), No. 2, p. 1.
      [9]
      S. Vadivel, A.N. Naveen, V.P. Kamalakannan, P. Cao, and N. Balasubramanian, Facile large scale synthesis of Bi2S3 nano rods-graphene composite for photocatalytic photoelectrochemical and supercapacitor application, Appl. Surf. Sci., 351(2015), p. 635. doi: 10.1016/j.apsusc.2015.04.101
      [10]
      J.S. Appasamy, J.C. Kurnia, and M.K. Assadi, Synthesis and evaluation of nitrogen-doped titanium dioxide/single walled carbon nanotube-based hydrophilic self-cleaning coating layer for solar photovoltaic panel surface, Sol. Energy, 196(2020), p. 80. doi: 10.1016/j.solener.2019.12.022
      [11]
      S.L. Zhou, F. Wang, S. Balachandran, G. Li, X.Q. Zhang, R. Wang, P. Liu, Y.F. Ding, S.M. Zhang, and M.S. Yang, Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties, RSC Adv., 7(2017), No. 83, p. 52375. doi: 10.1039/C7RA09613E
      [12]
      R. Zhong, Q. Zhong, M.J. Huo, B.L. Yang, and H. Li, Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation, Int. J. Biol. Macromol., 146(2020), p. 939. doi: 10.1016/j.ijbiomac.2019.09.217
      [13]
      Z.F. Xu, J. Chen, and X.T. Zou, Research and analysis of the anti-UV performance of nano-TiO2 glass beads composite coating, Integr. Ferroelectr., 169(2016), No. 1, p. 73. doi: 10.1080/10584587.2016.1163192
      [14]
      X.J. Wen, Q. Lu, X.X. Lv, J. Sun, J. Guo, Z.H. Fei, and C.G. Niu, Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism, J. Hazard. Mater., 385(2020), art. No. 121508. doi: 10.1016/j.jhazmat.2019.121508
      [15]
      J. Sun, C.H. Shen, J. Guo, H. Guo, Y.F. Yin, X.J. Xu, Z.H. Fei, Z.T. Liu, and X.J. Wen, Highly efficient activation of peroxymonosulfate by Co3O4/Bi2WO6 p-n heterojunction composites for the degradation of ciprofloxacin under visible light irradiation, J. Colloid Interface Sci., 588(2021), p. 19. doi: 10.1016/j.jcis.2020.12.043
      [16]
      J. Guo, C.H. Shen, J. Sun, X.J. Xu, X.Y. Li, Z.H. Fei, Z.T. Liu, and X.J. Wen, Highly efficient activation of peroxymonosulfate by Co3O4/Bi2MoO6 p-n heterostructure composites for the degradation of norfloxacin under visible light irradiation, Sep. Purif. Technol., 259(2021), art. No. 118109. doi: 10.1016/j.seppur.2020.118109
      [17]
      C.H. Shen, Y. Chen, X.J. Xu, X.Y. Li, X.J. Wen, Z.T. Liu, R. Xing, H. Guo, and Z.H. Fei, Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts, J. Hazard. Mater., 416(2021), art. No. 126217. doi: 10.1016/j.jhazmat.2021.126217
      [18]
      C.K. Prier, D.A. Rankic, and D.W.C. MacMillan, Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis, Chem. Rev., 113(2013), No. 7, p. 5322. doi: 10.1021/cr300503r
      [19]
      Q. Ling, J.S. Wei, L.Y. Chen, H.J. Zhao, Z. Lei, Z.G. Zhao, R.L. Xie, Q.P. Ke, and P. Cui, Solvothermal synthesis of humic acid-supported CeO2 nanosheets composite as high performance adsorbent for Congo red removal, J. Nanosci. Nanotechnol., 20(2020), No. 5, p. 3225. doi: 10.1166/jnn.2020.17384
      [20]
      Y.X. Tian, H.Z. Li, Z.Y. Ruan, G.J. Cui, and S.Q. Yan, Synthesis of NiCo2O4 nanostructures with different morphologies for the removal of methyl orange, Appl. Surf. Sci., 393(2017), p. 434. doi: 10.1016/j.apsusc.2016.10.053
      [21]
      R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73. doi: 10.1007/s12613-018-1548-0
      [22]
      B. Ji, G.X. Yan, W.F. Zhao, X. Zhao, J.J. Ni, J.L. Duan, Z. Chen, and Z. Yang, Titanium mesh-supported TiO2 nano-film for the photocatalytic degradation of ethylene under a UV-LED, Ceram. Int., 46(2020), No. 13, p. 20830. doi: 10.1016/j.ceramint.2020.05.113
      [23]
      Z. Ghasemi, H. Younesi, and A.A. Zinatizadeh, Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5, J. Taiwan Inst. Chem. Eng., 65(2016), p. 357. doi: 10.1016/j.jtice.2016.05.039
      [24]
      N. Nasseh, A.H. Panahi, M. Esmati, N. Daglioglu, A. Asadi, H. Rajati, and F. Khodadoost, Enhanced photocatalytic degradation of tetracycline from aqueous solution by a novel magnetically separable FeNi3/SiO2/ZnO nano-composite under simulated sunlight: Efficiency, stability, and kinetic studies, J. Mol. Liq., 301(2020), art. No. 112434. doi: 10.1016/j.molliq.2019.112434
      [25]
      S. Lagergren, Zurtheorie der sogenannten adsorption gelosterstoffe, Kungliga Svenska Vetenskapsakademiens Handlingar, 24(1898), p. 1.
      [26]
      Y.S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process. Biochem., 34(1999), No. 5, p. 451. doi: 10.1016/S0032-9592(98)00112-5
      [27]
      A.T. Nguyen, C.T. Hsieh, and R.S. Juang, Substituent effects on photodegradation of phenols in binary mixtures by hybrid H2O2 and TiO2 suspensions under UV irradiation, J. Taiwan Inst. Chem. Eng., 62(2016), p. 68. doi: 10.1016/j.jtice.2016.01.012
      [28]
      C.H. Nguyen, C.C. Fu, and R.S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways, J. Cleaner Prod., 202(2018), p. 413. doi: 10.1016/j.jclepro.2018.08.110
      [29]
      M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin, and R. Aryal, Synthesis, characterisation and application of TiO2-zeolite nanocomposites for the advanced treatment of industrial dye wastewater, J. Taiwan Inst. Chem. Eng., 50(2015), p. 288. doi: 10.1016/j.jtice.2014.12.013
      [30]
      Y.Q. Xue, J.P. Du, P.D. Wang, and Z.Z. Wang, Effect of particle size on kinetic parameters of the heterogeneous reactions, Acta Phys. Chim. Sin., 21(2005), No. 7, p. 758. doi: 10.3866/PKU.WHXB20050712
      [31]
      W.Z. Wang, W. Zhu, and H.L. Xu, Monodisperse, mesoporous ZnxCd1–xS nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem. C, 112(2008), No. 43, p. 16754. doi: 10.1021/jp805359r
      [32]
      N. Wang, X. Li, Y.L. Yang, T.T. Guo, X.X. Zhuang, S.Y. Ji, T.T. Zhang, Y. Shang, and Z.W. Zhou, Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation, Sep. Purif. Technol., 211(2019), p. 673. doi: 10.1016/j.seppur.2018.10.040
      [33]
      T.S. Anirudhan and J.R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions, J. Colloid Interface Sci., 490(2017), p. 343.
      [34]
      P. Raizada, P. Singh, A. Kumar, G. Sharma, B. Pare, S.B. Jonnalagadda, and P. Thakur, Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation, Appl. Catal. A, 486(2014), p. 159. doi: 10.1016/j.apcata.2014.08.043
      [35]
      B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, and P. Singh, Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl, J. Mol. Catal. A Chem., 423(2016), p. 400. doi: 10.1016/j.molcata.2016.07.043
      [36]
      D.P. Dutta, A. Rathore, A. Ballal, and A.K. Tyagi, Selective sorption and subsequent photocatalytic degradation of cationic dyes by sonochemically synthesized nano CuWO4and Cu3Mo2O9, RSC Adv., 5(2015), No. 115, p. 94866. doi: 10.1039/C5RA20754A
      [37]
      N. Popa and M. Visa, The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater, Adv. Powder Technol., 28(2017), No. 8, p. 1866. doi: 10.1016/j.apt.2017.04.014

    Catalog


    • /

      返回文章
      返回