留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  940
  • HTML全文浏览量:  399
  • PDF下载量:  112
  • 被引次数: 0
Xiaoyan Liu, Fangyuan Sun, Wei Wang, Jie Zhao, Luhua Wang, Zhanxun Che, Guangzhu Bai, Xitao Wang, Jinguo Wang, Moon J. Kim, and Hailong Zhang, Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2020-2031. https://doi.org/10.1007/s12613-021-2336-9
Cite this article as:
Xiaoyan Liu, Fangyuan Sun, Wei Wang, Jie Zhao, Luhua Wang, Zhanxun Che, Guangzhu Bai, Xitao Wang, Jinguo Wang, Moon J. Kim, and Hailong Zhang, Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2020-2031. https://doi.org/10.1007/s12613-021-2336-9
引用本文 PDF XML SpringerLink
研究论文

铬中间层厚度对铜/金刚石界面热导的影响

  • 通讯作者:

    孙方远    E-mail: sunfangyuan@ustb.edu.cn

    张海龙    E-mail: hlzhang@ustb.edu.cn

文章亮点

  • (1) 在金刚石基底上沉积Cu/Cr双层膜,模拟Cu/diamond复合材料的实际界面。
  • (2) 通过时域热反射技术测量Cu/Cr/diamond的界面热导。
  • (3) Cu/Cr/diamond的界面热导值随Cr中间层厚度的减小而增大。
  • (4) 提供了一种调控金属/非金属异质界面热导的方法。
  • Cu/diamond复合材料由于具有较高的热导率和可调控的热膨胀系数,已成为电子封装热管理材料的研究热点。但是,通常情况下Cu与diamond之间的润湿性较差,且二者之间不发生化学反应,因此无法形成较强的界面结合,使得金刚石的导热潜能不能充分发挥。界面热导(h)对于Cu/diamond复合材料获得高导热性能起着决定性作用。通过金刚石表面金属化或金属基体合金化的方法加入碳化物形成元素,可以改善Cu与diamond的界面结合,同时有效调节Cu与diamond的声学性能失配,提高Cu/diamond复合材料的导热性能。本文采用磁控溅射法制备具有不同纳米厚度(5~150 nm)Cr中间层的Cu/Cr/diamond样品,利用时域热反射技术实验测量Cu与diamond的h值,分析Cr中间层厚度对Cu与diamond的h值的影响。研究结果表明,在Cu和diamond之间加入Cr中间层,能够解决Cu与diamond不润湿的问题,改善界面两侧材料的声学性能失配,从而有效提高Cu与diamond的h值。当添加5~150 nm厚度的Cr中间层时,Cu与diamond的h值比未添加Cr中间层时提高11%~374 %;当Cr中间层厚度为5 nm时,Cu与diamond的h最大值为270 MW⋅m−2⋅K−1。当Cr中间层厚度逐渐减小时,Cr层内的热载流子由电子主导向声子主导转变,利用Cr中间层的声子热传导途径,可以有效提升金属Cu与非金属金刚石之间的热传导效率。将Cr中间层厚度减小到21 nm以内,可以显著提高Cu与diamond之间的h值。本研究提供了一种调控金属/非金属异质界面热导的方法,并为Cu/diamond复合材料的界面设计提供理论参考。
  • Research Article

    Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface

    + Author Affiliations
    • The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface. The paper investigates the heat transport behavior between a 200-nm Cu layer and a single-crystalline diamond substrate inserted by a chromium (Cr) interlayer having a series of thicknesses from 150 nm down to 5 nm. The purpose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance (h) between Cu and diamond. The time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and diamond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond. The h value exhibits a decreasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer. The high h values are observed for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr layer. The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface, which plays a pivotal role in designing materials and devices for thermal management applications.
    • loading
    • [1]
      Y.T. Li, Y. Tian, M.X. Sun, T. Tu, Z.Y. Ju, G.Y. Gou, Y.F. Zhao, Z.Y. Yan, F. Wu, D. Xie, H. Tian, Y. Yang, and T.L. Ren, Graphene-based devices for thermal energy conversion and utilization, Adv. Funct. Mater., 30(2020), No. 8, art. No. 1903888. doi: 10.1002/adfm.201903888
      [2]
      C.G. Qiu, Z.Y. Zhang, M.M. Xiao, Y.J. Yang, D.L. Zhong, and L.M. Peng, Scaling carbon nanotube complementary transistors to 5-nm gate lengths, Science, 355(2017), No. 6322, p. 271. doi: 10.1126/science.aaj1628
      [3]
      O. Yenigun and M. Barisik, Effect of nano-film thickness on thermal resistance at water/silicon interface, Int. J. Heat Mass Transfer, 134(2019), p. 634. doi: 10.1016/j.ijheatmasstransfer.2019.01.075
      [4]
      Q. Zhang, X.F. Wang, S.H. Shen, Q. Lu, X.Z. Liu, H.Y. Li, J.Y. Zheng, C.P. Yu, X.Y. Zhong, L. Gu, T.L. Ren, and L.Y. Jiao, Simultaneous synthesis and integration of two-dimensional electronic components, Nat. Electron., 2(2019), No. 4, p. 164. doi: 10.1038/s41928-019-0233-2
      [5]
      A. Hanif, Y.C. Yu, D. DeVoto, and F. Khan, A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices, IEEE Trans. Power Electron., 34(2019), No. 5, p. 4729. doi: 10.1109/TPEL.2018.2860587
      [6]
      P.P. Wang, G.Q. Chen, W.J. Li, H. Li, B.Y. Ju, M. Hussain, W.S. Yang, and G.H. Wu, Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
      [7]
      T. Lan, Y.H. Jiang, X.J. Zhang, F. Cao, and S.H. Liang, Competitive precipitation behavior of hybrid reinforcements in copper matrix composites fabricated by powder metallurgy, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1090. doi: 10.1007/s12613-020-2052-x
      [8]
      K.X. Gu, M.J. Pang, and Y.Z. Zhan, Insight into interfacial structure and bonding nature of diamond(001)/Cr3C2(001) interface, J. Alloys Compd., 770(2019), p. 82. doi: 10.1016/j.jallcom.2018.08.112
      [9]
      Ł. Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska, and A. Michalski, Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications, Mater. Des., 120(2017), p. 170. doi: 10.1016/j.matdes.2017.02.005
      [10]
      Y.P. Wu, Y.N. Sun, J.B. Luo, P. Cheng, Y. Wang, H. Wang, and G.F. Ding, Microstructure of Cu-diamond composites with near-perfect interfaces prepared via electroplating and its thermal properties, Mater. Charact., 150(2019), p. 199. doi: 10.1016/j.matchar.2019.02.018
      [11]
      X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046. doi: 10.1016/j.apsusc.2020.146046
      [12]
      G. Chang, F.Y. Sun, J.L. Duan, Z.F. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater., 160(2018), p. 235. doi: 10.1016/j.actamat.2018.09.004
      [13]
      J.W. Li, H.L. Zhang, Y. Zhang, Z.F. Che, and X.T. Wang, Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration, J. Alloys Compd., 647(2015), p. 941. doi: 10.1016/j.jallcom.2015.06.062
      [14]
      Y. Zhang, H.L. Zhang, J.H. Wu, and X.T. Wang, Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles, Scripta Mater., 65(2011), No. 12, p. 1097. doi: 10.1016/j.scriptamat.2011.09.028
      [15]
      L. Lei, Y. Su, L. Bolzoni, and F. Yang, Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu–Ti/diamond composite, J. Mater. Sci. Technol., 49(2020), p. 7. doi: 10.1016/j.jmst.2020.02.023
      [16]
      C. Azina, I. Cornu, J.F. Silvain, Y.F. Lu, and J.L. Battaglia, Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials, AIP Adv., 9(2019), No. 5, art. No. 055315. doi: 10.1063/1.5052307
      [17]
      J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He, and H.L. Zhang, High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites, Scripta Mater., 109(2015), p. 72. doi: 10.1016/j.scriptamat.2015.07.022
      [18]
      R.X. Liu, G.Q. Luo, Y. Li, J. Zhang, Q. Shen, and L.M. Zhang, Microstructure and thermal properties of diamond/copper composites with Mo2C in situ nano-coating, Surf. Coat. Technol., 360(2019), p. 376. doi: 10.1016/j.surfcoat.2018.12.116
      [19]
      S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372. doi: 10.1016/j.apsusc.2017.01.078
      [20]
      A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, and K.J. Kurzydłowski, Diamond-tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des., 76(2015), p. 97. doi: 10.1016/j.matdes.2015.03.056
      [21]
      G.Z. Bai, L.H. Wang, Y.J. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix, Mater. Charact., 152(2019), p. 265. doi: 10.1016/j.matchar.2019.04.015
      [22]
      S.W. Hung, S.Q. Hu, and J. Shiomi, Spectral control of thermal boundary conductance between copper and carbon crystals by self-assembled monolayers, ACS Appl. Electron. Mater., 1(2019), No. 12, p. 2594. doi: 10.1021/acsaelm.9b00587
      [23]
      M. Jeong, J.P. Freedman, H.J. Liang, C.M. Chow, V.M. Sokalski, J.A. Bain, and J.A. Malen, Enhancement of thermal conductance at metal-dielectric interfaces using subnanometer metal adhesion layers, Phys. Rev. Appl., 5(2016), No. 1, art. No. 014009. doi: 10.1103/PhysRevApplied.5.014009
      [24]
      L.H. Wang, J.W. Li, Z.F. Che, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites, J. Alloys Compd., 749(2018), p. 1098. doi: 10.1016/j.jallcom.2018.03.241
      [25]
      M. Blank and L. Weber, Towards a coherent database of thermal boundary conductance at metal/dielectric interfaces, J. Appl. Phys., 125(2019), No. 9, art. No. 095302. doi: 10.1063/1.5085176
      [26]
      R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Appl. Phys. Lett., 94(2009), No. 4, art. No. 041905. doi: 10.1063/1.3075065
      [27]
      M. Blank and L. Weber, Influence of the thickness of a nanometric copper interlayer on Au/dielectric thermal boundary conductance, J. Appl. Phys., 124(2018), No. 10, art. No. 105304. doi: 10.1063/1.5030049
      [28]
      S.L. Udachan, N.H. Ayachit, and L.A. Udachan, Impact of substrates on the electrical properties of thin chromium films, Ing. Univ., 23(2019), No. 2. doi: 10.11144/javeriana.iyu23-2.isep
      [29]
      A.V. Andreyev, The wetting and bonding of diamond films by high melting point metals in the range of diamond thermodynamic stability, Diam. Relat. Mater., 3(1994), No. 10, p. 1262. doi: 10.1016/0925-9635(94)90131-7
      [30]
      T. Tanaka, N. Ikawa, and H. Tsuwa, Affinity of diamond for metals, CIRP Ann., 30(1981), No. 1, p. 241. doi: 10.1016/S0007-8506(07)60934-2
      [31]
      R. Cheaito, J.T. Gaskins, M.E. Caplan, B.F. Donovan, B.M. Foley, A. Giri, J.C. Duda, C.J. Szwejkowski, C. Constantin, H.J. Brown-Shaklee, J.F. Ihlefeld, and P.E. Hopkins, Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory, Phys. Rev. B, 91(2015), No. 3, art. No. 035432. doi: 10.1103/PhysRevB.91.035432
      [32]
      S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, and T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations, Phys. Rev. B, 95(2017), No. 8, art. No. 085310. doi: 10.1103/PhysRevB.95.085310
      [33]
      Y. Wang, Z.X. Lu, A.K. Roy, and X.L. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electron–phonon coupling perspective, J. Appl. Phys., 119(2016), No. 6, art. No. 065103. doi: 10.1063/1.4941347
      [34]
      Y. Wang, X.L. Ruan, and A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces, Phys. Rev. B, 85(2012), No. 20, art. No. 205311. doi: 10.1103/PhysRevB.85.205311
      [35]
      L. Chen, S.T. Chen, and Y. Hou, Understanding the thermal conductivity of diamond/copper composites by first-principles calculations, Carbon, 148(2019), p. 249. doi: 10.1016/j.carbon.2019.03.051
      [36]
      X.B. Li and R.G. Yang, Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces, Phys. Rev. B, 86(2012), No. 5, art. No. 054305. doi: 10.1103/PhysRevB.86.054305
      [37]
      S. Merabia and K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics, Phys. Rev. B, 86(2012), No. 9, art. No. 094303. doi: 10.1103/PhysRevB.86.094303
      [38]
      K. Chu, C.C. Jia, X.B. Liang, H. Chen, W.J. Gao, and H. Guo, Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance, Mater. Des., 30(2009), No. 10, p. 4311. doi: 10.1016/j.matdes.2009.04.019
      [39]
      W. Zhang, T.S. Fisher, and N. Mingo, The atomistic Green's function method: An efficient simulation approach for nanoscale phonon transport, Numer. Heat Transfer Part B, 51(2007), No. 4, p. 333. doi: 10.1080/10407790601144755
      [40]
      B.C. Gundrum, D.G. Cahill, and R.S. Averback, Thermal conductance of metal–metal interfaces, Phys. Rev. B, 72(2005), No. 24, art. No. 245426. doi: 10.1103/PhysRevB.72.245426
      [41]
      M. Blank, G. Schneider, J. Ordonez-Miranda, and L. Weber, Role of the electron–phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers, J. Appl. Phys., 126(2019), No. 16, art. No. 165302. doi: 10.1063/1.5115823
      [42]
      P.E. Hopkins, J.L. Kassebaum, and P.M. Norris, Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films, J. Appl. Phys., 105(2009), No. 2, art. No. 023710. doi: 10.1063/1.3068476
      [43]
      D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, Nanoscale thermal transport, J. Appl. Phys., 93(2003), No. 2, p. 793. doi: 10.1063/1.1524305
      [44]
      Z.B. Lin, L.V. Zhigilei, and V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, 77(2008), No. 7, art. No. 075133. doi: 10.1103/PhysRevB.77.075133
      [45]
      L. Guo, S.L. Hodson, T.S. Fisher, and X.F. Xu, Heat transfer across metal-dielectric interfaces during ultrafast-laser heating, J. Heat Transfer, 134(2012), No. 4, art. No. 042402. doi: 10.1115/1.4005255
      [46]
      P.E. Hopkins and P.M. Norris, Substrate influence in electron–phonon coupling measurements in thin Au films, Appl. Surf. Sci., 253(2007), No. 15, p. 6289. doi: 10.1016/j.apsusc.2007.01.065
      [47]
      J.B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, Realization of direct bonding of single crystal diamond and Si substrates, Appl. Phys. Lett., 110(2017), No. 11, art. No. 111603. doi: 10.1063/1.4978666
      [48]
      M. Lv, B. Xu, L.C. Cai, X.F. Guo, and X.D. Yuan, Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature, Appl. Surf. Sci., 439(2018), p. 780. doi: 10.1016/j.apsusc.2018.01.111
      [49]
      W.E.S. Unger, T. Wirth, and V.D. Hodoroaba, Auger electron spectroscopy, [in] Characterization of Nanoparticles, Elsevier, Amsterdam, 2020, p. 373.
      [50]
      Z. Cheng, T.Y. Bai, J.J. Shi, T.L. Feng, Y.K. Wang, M. Mecklenburg, C. Li, K.D. Hobart, T.I. Feygelson, M.J. Tadjer, B.B. Pate, B.M. Foley, L. Yates, S.T. Pantelides, B.A. Cola, M. Goorsky, and S. Graham, Tunable thermal energy transport across diamond membranes and diamond–Si interfaces by nanoscale graphoepitaxy, ACS Appl. Mater. Interfaces, 11(2019), No. 20, p. 18517. doi: 10.1021/acsami.9b02234
      [51]
      L.P. Zeng, K.C. Collins, Y.J. Hu, M.N. Luckyanova, A.A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K.A. Nelson, and G. Chen, Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures, Sci. Rep., 5(2015), art. No. 17131. doi: 10.1038/srep17131
      [52]
      K.T. Regner, D.P. Sellan, Z.H. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun., 4(2013), art. No. 1640. doi: 10.1038/ncomms2630
      [53]
      R. Anufriev, A. Ramiere, J. Maire, and M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures, Nat. Commun., 8(2017), art. No. 15505. doi: 10.1038/ncomms15505
      [54]
      R. Rastgarkafshgarkolaei, J.J. Zhang, C.A. Polanco, N.Q. Le, A.W. Ghosh, and P.M. Norris, Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers, Nanoscale, 11(2019), No. 13, p. 6254. doi: 10.1039/C8NR09188A
      [55]
      I.E. Monje, E. Louis, and J.M. Molina, Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment, J. Mater. Sci., 51(2016), No. 17, p. 8027. doi: 10.1007/s10853-016-0072-8
      [56]
      C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, and L. Zhang, Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol., 277(2015), p. 299. doi: 10.1016/j.surfcoat.2015.07.059
      [57]
      M. Kida, L. Weber, C. Monachon, and A. Mortensen, Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, J. Appl. Phys., 109(2011), No. 6, art. No. 064907. doi: 10.1063/1.3553870
      [58]
      Q.P. Kang, X.B. He, S.B. Ren, L. Zhang, M. Wu, C.Y. Guo, W. Cui, and X.H. Qu, Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications, Appl. Therm. Eng., 60(2013), No. 1-2, p. 423. doi: 10.1016/j.applthermaleng.2013.05.038
      [59]
      A. Majumdar and P. Reddy, Role of electron–phonon coupling in thermal conductance of metal-nonmetal interfaces, Appl. Phys. Lett., 84(2004), No. 23, p. 4768. doi: 10.1063/1.1758301
      [60]
      T. Min, Y.M. Gao, Y.F. Li, Y. Yang, R.T. Li, and X.J. Xie, First-principles calculations study on the electronic structures, hardness and Debye temperatures of chromium carbides, Rare Met. Mater. Eng., 41(2012), No. 2, p. 271.
      [61]
      Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, and D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites, Mater. Des., 55(2014), p. 257. doi: 10.1016/j.matdes.2013.09.060
      [62]
      E.T. Swartz and R.O. Pohl, Thermal boundary resistance, Rev. Mod. Phys., 61(1989), No. 3, p. 605. doi: 10.1103/RevModPhys.61.605
      [63]
      T.Q. Qiu and C.L. Tien, Size effects on nonequilibrium laser heating of metal films, J. Heat Transfer, 115(1993), No. 4, p. 842. doi: 10.1115/1.2911378
      [64]
      S.S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, The role of electron–phonon coupling in femtosecond laser damage of metals, Appl. Phys. A, 69(1999), No. 1, p. S99.
      [65]
      T. Saito, O. Matsuda, and O.B. Wright, Picosecond acoustic phonon pulse generation in nickel and chromium, Phys. Rev. B, 67(2003), No. 20, art. No. 205421. doi: 10.1103/PhysRevB.67.205421
      [66]
      J. Lombard, F. Detcheverry, and S. Merabia, Influence of the electron–phonon interfacial conductance on the thermal transport at metal/dielectric interfaces, J. Phys.: Condens. Matter, 27(2015), No. 1, art. No. 015007. doi: 10.1088/0953-8984/27/1/015007
      [67]
      J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, Electron and lattice dynamics following optical excitation of metals, Chem. Phys., 251(2000), No. 1-3, p. 237. doi: 10.1016/S0301-0104(99)00330-4
      [68]
      S.S. Wellershoff, J. Gudde, J. Hohlfeld, J.G. Muller, and E. Matthias, Role of electron–phonon coupling in femtosecond laser damage of metals, Proc. SPIE 3343, High-Power Laser Ablation, 3343(1998), p. 378. doi: 10.1117/12.321573这个可以删掉吧
      [69]
      M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.S. Wellershoff, and J. Hohlfeld, Ultrafast electron dynamics at metal surfaces: Competition between electron–phonon coupling and hot-electron transport, Phys. Rev. B, 61(2000), No. 2, p. 1101. doi: 10.1103/PhysRevB.61.1101
      [70]
      S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, and G. Dresselhaus, Femtosecond room-temperature measurement of the electron–phonon coupling constant γ in metallic superconductors, Phys. Rev. Lett., 64(1990), No. 18, p. 2172. doi: 10.1103/PhysRevLett.64.2172
      [71]
      Y. Ezzahri and A. Shakouri, Ballistic and diffusive transport of energy and heat in metals, Phys. Rev. B, 79(2009), No. 18, art. No. 184303. doi: 10.1103/PhysRevB.79.184303
      [72]
      H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, and G.A. Mourou, Time-resolved observation of electron-phonon relaxation in copper, Phys. Rev. Lett., 58(1987), No. 12, p. 1212. doi: 10.1103/PhysRevLett.58.1212
      [73]
      G.L. Eesley, Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses, Phys. Rev. B, 33(1986), No. 4, p. 2144. doi: 10.1103/PhysRevB.33.2144
      [74]
      M. Saghebfar, M.K. Tehrani, S.M.R. Darbani, and A.E. Majd, Femtosecond pulse laser ablation of chromium: Experimental results and two-temperature model simulations, Appl. Phys. A, 123(2017), No. 1, art. No. 28. doi: 10.1007/s00339-016-0660-0
      [75]
      D. Gall, Electron mean free path in elemental metals, J. Appl. Phys., 119(2016), No. 8, art. No. 085101. doi: 10.1063/1.4942216
      [76]
      G.S. Kumar, G. Prasad, and R.O. Pohl, Experimental determinations of the Lorenz number, J. Mater. Sci., 28(1993), No. 16, p. 4261. doi: 10.1007/BF01154931
      [77]
      E. Fawcett and D. Griffiths, The Fermi surface areas of chromium, molybdenum and tungsten, J. Phys. Chem. Solids, 23(1962), No. 11, p. 1631. doi: 10.1016/0022-3697(62)90246-9
      [78]
      D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S.H. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi, Nanoscale thermal transport. II. 2003–2012, Appl. Phys. Rev., 1(2014), No. 1, art. No. 011305. doi: 10.1063/1.4832615
      [79]
      L. Constant, C. Speisser, and F.L. Normand, HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS, Surf. Sci., 387(1997), No. 1-3, p. 28. doi: 10.1016/S0039-6028(97)00203-3
      [80]
      Y.F. Zhu, L. Wang, W.Q. Yao, and L.L. Cao, The interface diffusion and reaction between Cr layer and diamond particle during metallization, Appl. Surf. Sci., 171(2001), No. 1-2, p. 143. doi: 10.1016/S0169-4332(00)00555-9
      [81]
      Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, and C.W. Wilmsen, The C KLL first-derivative X-ray photoelectron spectroscopy spectra as a fingerprint of the carbon state and the characterization of diamondlike carbon films, J. Vac. Sci. Technol. A, 5(1987), No. 5, p. 2809. doi: 10.1116/1.574312
      [82]
      Y.F. Zhu, W.Q. Yao, B. Zheng, and L.L. Cao, Application of AES line shape analysis for the identification of interface species during the metallization of diamond particles, Surf. Interface Anal., 28(1999), No. 1, p. 254. doi: 10.1002/(SICI)1096-9918(199908)28:1<254::AID-SIA588>3.0.CO;2-E
      [83]
      M.A. Smith and L.L. Levenson, Final-state effects in carbon Auger spectra of transition-metal carbides, Phys. Rev. B, 16(1977), No. 4, p. 1365. doi: 10.1103/PhysRevB.16.1365
      [84]
      J.A. Thornton, Substrate heating in cylindrical magnetron sputtering sources, Thin Solid Films, 54(1978), No. 1, p. 23. doi: 10.1016/0040-6090(78)90273-0
      [85]
      Z.J. Li, S. Tan, E. Bozorg-Grayeli, T. Kodama, M. Asheghi, G. Delgado, M. Panzer, A. Pokrovsky, D. Wack, and K.E. Goodson, Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm, Nano Lett., 12(2012), No. 6, p. 3121. doi: 10.1021/nl300996r
      [86]
      N. Stojanovic, D.H.S. Maithripala, J.M. Berg, and M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law, Phys. Rev. B, 82(2010), No. 7, art. No. 075418. doi: 10.1103/PhysRevB.82.075418
      [87]
      H.C. Chien, D.J. Yao, and C.T. Hsu, Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric, Appl. Phys. Lett., 93(2008), No. 23, art. No. 231910. doi: 10.1063/1.3039806
      [88]
      H. Belmabrouk, H. Rezgui, F. Nasri, M.F.B. Aissa, and A.A. Guizani, Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime, Eur. Phys. J. Plus, 135(2020), No. 1, art. No. 109. doi: 10.1140/epjp/s13360-020-00180-7
      [89]
      M.E. Siemens, Q. Li, R.G. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, and H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams, Nat. Mater., 9(2010), No. 1, p. 26. doi: 10.1038/nmat2568
      [90]
      F.W. Mu, Z. Cheng, J.J. Shi, S. Shin, B. Xu, J. Shiomi, S. Graham, and T. Suga, High thermal boundary conductance across bonded heterogeneous GaN–SiC interfaces, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 33428. doi: 10.1021/acsami.9b10106

    Catalog


    • /

      返回文章
      返回