Cite this article as: |
Natpichan Pienutsa, Krittamet Yannawibut, Jetthana Phattharaphongmanee, Oukrit Thonganantakul, and Sira Srinives, Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 529-535. https://doi.org/10.1007/s12613-021-2338-7 |
Sira Srinives E-mail: sira.sri@mahidol.edu
六价铬 (Cr(VI)) 化合物可用于各种行业,但具有毒性和致癌性。本文使用二氧化钛 (TiO2) -还原氧化石墨烯 (rGO) 复合材料作为传感元件,制造了一种用于测定 Cr(VI) 的电流传感器。该复合材料是按照溶胶−凝胶化学合成的,产生尺寸约为 50 nm 的 TiO2 纳米颗粒,固定在化学剥离的 rGO 片材上。该复合材料用于三电极电化学电池并以电流模式运行,对 50−500 ppb Cr(VI) 表现出良好的响应。对 pH 3 Mcilvane 缓冲介质的最佳结果显示灵敏度为 9.12 × 10−4 ppb−1,检测限为 6 ppb,200 ppm Ca(II)、150 ppm Mg(II) 和 50 ppb Pb(II) 没有信号干扰。TiO2-rGO 传感器的优异结果可归因于TiO2和 rGO 之间的协同效应,这是由于 n-p 异质结的存在和 rGO 上TiO2 纳米颗粒的形成。
Hexavalent chromium (Cr(VI)) compound is useful to various industries but is toxic and carcinogenic. In this research work, we fabricate an amperometric sensor for the determination of Cr(VI), using a titanium dioxide (TiO2)-reduced graphene oxide (rGO) composite as the sensing element. The composite was synthesized following sol−gel chemistry, yielding TiO2 nanoparticles of ~50 nm in size, immobilized on chemically exfoliated rGO sheets. The composite was employed in a 3-electrode electrochemical cell and operated in an amperometric mode, exhibiting good responses to the 50 to 500 ppb Cr(VI). Our best result from pH 3 Mcilvane’s buffer medium reveals the sensitivity of 9.12 × 10−4 ppb−1 and a detection limit of 6 ppb with no signal interference from 200 ppm Ca(II), 150 ppm Mg(II), and 50 ppb Pb(II). The excellent results of the TiO2-rGO sensor can be attributed to synergic effects between TiO2 and rGO, resulting from the presence of n-p heterojunctions and the formation of the TiO2 nanoparticles on rGO.
[1] |
F. Xu, T. Ma, L. Zhou, Z.F. Hu, and L. Shi, Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions, Chemosphere, 130(2015), p. 46. doi: 10.1016/j.chemosphere.2015.02.033
|
[2] |
Y.S. Hedberg and C. Lidén, Chromium(III) and chromium(VI) release from leather during 8 months of simulated use, Contact Dermat., 75(2016), No. 2, p. 82. doi: 10.1111/cod.12581
|
[3] |
B. Kim, S. Kim, and H. Kim, Effects of alloying elements (Cr, Mn) on corrosion properties of the high-strength steel in 3.5% NaCl solution, Adv. Mater. Sci. Eng., 2018(2018), p. 1.
|
[4] |
J. Kotaś and Z. Stasicka, Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 107(2000), No. 3, p. 263. doi: 10.1016/S0269-7491(99)00168-2
|
[5] |
K.K. Krishnani, S. Srinives, B.C. Mohapatra, V.M. Boddu, J.M. Hao, X. Meng, and A. Mulchandani, Hexavalent chromium removal mechanism using conducting polymers, J. Hazard. Mater., 252-253(2013), p. 99. doi: 10.1016/j.jhazmat.2013.01.079
|
[6] |
S.A. Miscoria, C. Jacq, T. Maeder, and R. Martín Negri, Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media, Sens. Actuators B, 195(2014), p. 294. doi: 10.1016/j.snb.2014.01.013
|
[7] |
A. Zazoua, S. Zougar, R. Kherrat, M.H. Samar, N. Jaffrezic-Renault, A. Errachid, and A. Abbaci, Development of a hexavalent chromium ISFET sensor with a polymeric membrane including tributylphosphate, Mater. Sci. Eng. C, 26(2006), No. 2-3, p. 568. doi: 10.1016/j.msec.2005.10.010
|
[8] |
Y.M. Chen, Y.Q. Dong, H. Wu, C.Q. Chen, Y.W. Chi, and G.N. Chen, Electrochemiluminescence sensor for hexavalent chromium based on the graphene quantum dots/peroxodisulfate system, Electrochim. Acta, 151(2015), p. 552. doi: 10.1016/j.electacta.2014.11.068
|
[9] |
L.E. Korshoj, A.J. Zaitouna, and R.Y. Lai, Methylene blue-mediated electrocatalytic detection of hexavalent chromium, Anal. Chem., 87(2015), No. 5, p. 2560. doi: 10.1021/acs.analchem.5b00197
|
[10] |
Y. Ku and I.L. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res., 35(2001), No. 1, p. 135. doi: 10.1016/S0043-1354(00)00098-1
|
[11] |
V. Loryuenyong, N. Jarunsak, T. Chuangchai, and A. Buasri, The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles, Adv. Mater. Sci. Eng., 2014(2014), art. No. 348427.
|
[12] |
K. Chen, Z.L. Zhang, Y.M. Liang, and W. Liu, A graphene-based electrochemical sensor for rapid determination of phenols in water, Sensors, 13(2013), No. 5, p. 6204. doi: 10.3390/s130506204
|
[13] |
B.S. He and J.W. Li, A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite, Anal. Methods, 11(2019), No. 11, p. 1427. doi: 10.1039/C9AY00197B
|
[14] |
T.K. Sari, F. Takahashi, J.Y. Jin, R. Zein, and E. Munaf, Electrochemical determination of chromium(VI) in river water with gold nanoparticles-graphene nanocomposites modified electrodes, Anal. Sci., 34(2018), No. 2, p. 155. doi: 10.2116/analsci.34.155
|
[15] |
S.M. Zhu, J.J. Guo, J.P. Dong, Z.W. Cui, T. Lu, C.L. Zhu, D. Zhang, and J. Ma, Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors, Ultrason. Sonochem., 20(2013), No. 3, p. 872. doi: 10.1016/j.ultsonch.2012.12.001
|
[16] |
J.L. Zhang, H.J. Yang, G.X. Shen, P. Cheng, J.Y. Zhang, and S.W. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun., 46(2010), No. 7, p. 1112. doi: 10.1039/B917705A
|
[17] |
K. Alamelu, V. Raja, L. Shiamala, and B.M. Jaffar Ali, Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes, Appl. Surf. Sci., 430(2018), p. 145. doi: 10.1016/j.apsusc.2017.05.054
|
[18] |
Y.P. Zhang and C.X. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light, J. Mater. Sci., 46(2011), No. 8, p. 2622. doi: 10.1007/s10853-010-5116-x
|
[19] |
Y. Zhao, D.L. Zhao, C.L. Chen, and X.K. Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles, J. Colloid Interface Sci., 405(2013), p. 211. doi: 10.1016/j.jcis.2013.05.004
|
[20] |
E. Lee, D. Lee, J. Yoon, Y.L. Yin, Y.N. Lee, S. Uprety, Y.S. Yoon, and D.J. Kim, Enhanced gas-sensing performance of GO/TiO2 composite by photocatalysis, Sensors, 18(2018), No. 10, art. No. 3334. doi: 10.3390/s18103334
|
[21] |
Y. Haldorai, A. Rengaraj, C.H. Kwak, Y.S. Huh, and Y.K. Han, Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants, Synth. Met., 198(2014), p. 10. doi: 10.1016/j.synthmet.2014.09.034
|
[22] |
M. Szabó, J. Kalmár, T. Ditrói, G. Bellér, G. Lente, N. Simic, and I. Fábián, Equilibria and kinetics of chromium(VI) speciation in aqueous solution − A comprehensive study from pH 2 to 11, Inorg. Chim. Acta, 472(2018), p. 295. doi: 10.1016/j.ica.2017.05.038
|