留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(9)

数据统计

分享

计量
  • 文章访问数:  3342
  • HTML全文浏览量:  829
  • PDF下载量:  365
  • 被引次数: 0
Ping Zhu, Pingping Wang, Puzhen Shao, Xiu Lin, Ziyang Xiu, Qiang Zhang, Equo Kobayashi,  and Gaohui Wu, Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 200-211. https://doi.org/10.1007/s12613-021-2339-6
Cite this article as:
Ping Zhu, Pingping Wang, Puzhen Shao, Xiu Lin, Ziyang Xiu, Qiang Zhang, Equo Kobayashi,  and Gaohui Wu, Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 200-211. https://doi.org/10.1007/s12613-021-2339-6
引用本文 PDF XML SpringerLink
特约综述

金刚石/金属复合材料界面改性与热传导行为的研究进展

  • 通讯作者:

    王平平    E-mail: hit_wangpingping@163.com

    修子扬    E-mail: xiuzy@hit.edu.cn

    张强    E-mail: zhang_tsiang@hit.edu.cn

文章亮点

  • (1) 从界面改性实验研究与理论模拟计算两个方面综述了近年来金刚石/金属复合材料的重要研究进展。
  • (2) 提出了金刚石/金属复合材料界面改性的基本要求,评价了不同界面改性方式对金刚石/铝、金刚石/铜复合材料热导率的改性效果。
  • 金刚石/金属复合材料以其优异的导热性能和低膨胀性能被广泛应用于航空航天和电子封装领域。然而,化学性能的差异导致金刚石与金属的界面不相容,这对复合材料的性能有很大的影响。为了提高金刚石与金属的界面相容性,必须对复合材料的界面进行改性。本文系统的总结了近年来金刚石/金属复合材料及其界面结构优化和性能控制在热管理领域的重要研究进展。介绍了近年来计算模拟技术在金刚石/金属复合材料研究中的应用。金刚石/金属界面改性主要通过基体金属合金化、金刚石颗粒表面处理及界面构型设计三种方式实现。其中,界面相的组成及尺寸是影响复合材料热性能的关键因素。此外,通过复合材料界面构型设计,在材料内部形成连续的金刚石颗粒导热通道为提高复合材料热导率提供了新的思路。近年来,在优化金刚石/金属界面结构的同时,研究者们也通过计算模拟对复合材料的界面性质及导热行为展开了研究。虽然已有针对金刚石/金属界面改性的大量研究,复合材料导热机制的理论研究尚不完善,应进一步建立金刚石/金属复合材料界面相组成和比例与导热系数之间的定量关系,为实验提供理论指导。此外,今后还可以借助多尺度模拟技术和实验研究金刚石/金属复合材料的界面结合和热传导机理。

  • Invited Review

    Research progress in interface modification and thermal conduction behavior of diamond/metal composites

    + Author Affiliations
    • Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion. However, the difference in chemical properties leads to interface incompatibility between diamond and metal, which has a considerable impact on the performance of the composites. To improve the interface compatibility between diamond and metal, it is necessary to modify the interface of composites. This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites. Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.

    • loading
    • [1]
      S. Li, Q.Y. Zheng, Y.C. Lü, X.Y. Liu, X.Q. Wang, P.Y. Huang, D.G. Cahill, and B. Lü, High thermal conductivity in cubic boron arsenide crystals, Science, 361(2018), No. 6402, p. 579. doi: 10.1126/science.aat8982
      [2]
      C.L. Wei, X. Xu, B.Z. Wei, J.G. Cheng, and P.Q. Chen, Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W–30Cu composites prepared by microwave sintering, Diam. Relat. Mater., 104(2020), art. No. 107760. doi: 10.1016/j.diamond.2020.107760
      [3]
      P.D. Garman, J.M. Johnson, V. Talesara, H. Yang, D. Zhang, J. Castro, W. Lu, J. Hwang, and L.J. Lee, Silicon oxycarbide accelerated chemical vapor deposition of graphitic networks on ceramic substrates for thermal management enhancement, ACS Appl. Nano Mater., 2(2019), No. 1, p. 452. doi: 10.1021/acsanm.8b01998
      [4]
      Y. Mei, P.Z. Shao, M. Sun, G.Q. Chen, M. Hussain, F.L. Huang, Q. Zhang, X.S. Gao, Y.Y. Pei, S.J. Zhong, and G.H. Wu, Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 888. doi: 10.1007/s12613-020-2048-6
      [5]
      S. Shahsavar, M. Ketabchi, and S. Bagherzadeh, Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 160. doi: 10.1007/s12613-020-1969-4
      [6]
      C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1-2, p. 22. doi: 10.1016/S1369-7021(07)70349-8
      [7]
      K.A. Weidenmann, R. Tavangar, and L. Weber, Rigidity of diamond reinforced metals featuring high particle contents, Compos. Sci. Technol., 69(2009), No. 10, p. 1660. doi: 10.1016/j.compscitech.2009.03.016
      [8]
      G.Z. Bai, Y.J. Zhang, X.Y. Liu, J.J. Dai, X.T. Wang, and H.L. Zhang, High-temperature thermal conductivity and thermal cycling behavior of Cu–B/diamond composites, IEEE Trans. Compon. Packag. Manuf. Technol., 10(2020), No. 4, p. 626. doi: 10.1109/TCPMT.2019.2958056
      [9]
      Z.Q. Tan, D.B. Xiong, G.L. Fan, Z.Z. Chen, Q. Guo, C.P. Guo, G. Ji, Z.Q. Li, and D. Zhang, Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion, J. Mater. Sci., 53(2018), No. 9, p. 6602. doi: 10.1007/s10853-018-2024-y
      [10]
      J.B. Liang, S. Yamajo, M. Kuball, and N. Shigekawa, Room-temperature direct bonding of diamond and Al, Scripta Mater., 159(2019), p. 58. doi: 10.1016/j.scriptamat.2018.09.016
      [11]
      Q.Y. Shi, Z.Q. Liu, D. Wu, H. Zhang, D.R. Ni, and K. Suganuma, Fabrication of Ni–P coating film on diamond/Al composite and its soldering reliability, J. Mater. Sci.: Mater. Electron., 29(2018), No. 10, p. 8371. doi: 10.1007/s10854-018-8848-z
      [12]
      G.Q. Chen, W.S. Yang, L. Xin, P.P. Wang, S.F. Liu, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 735(2018), p. 777. doi: 10.1016/j.jallcom.2017.11.183
      [13]
      X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046. doi: 10.1016/j.apsusc.2020.146046
      [14]
      G. Chang, F.Y. Sun, L.H. Wang, Z.X. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications, ACS Appl. Mater. Interfaces, 11(2019), No. 29, p. 26507. doi: 10.1021/acsami.9b08106
      [15]
      I.E. Monje, E. Louis, and J.M. Molina, Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control, Compos. A: Appl. Sci. Manuf., 48(2013), p. 9. doi: 10.1016/j.compositesa.2012.12.010
      [16]
      Y.P. Wu, J.B. Luo, Y. Wang, G.L. Wang, H. Wang, Z.Q. Yang, and G.F. Ding, Critical effect and enhanced thermal conductivity of Cu–diamond composites reinforced with various diamond prepared by composite electroplating, Ceram. Int., 45(2019), No. 10, p. 13225. doi: 10.1016/j.ceramint.2019.04.008
      [17]
      C. Edtmaier, J. Segl, R. Koos, M. Schöbel, and C. Feldbaumer, Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions, Diam. Relat. Mater., 106(2020), art. No. 107842. doi: 10.1016/j.diamond.2020.107842
      [18]
      Z. Liang and H.L. Tsai, Effect of thin film confined between two dissimilar solids on interfacial thermal resistance, J. Phys. Condens. Matter, 23(2011), No. 49, p. 495303. doi: 10.1088/0953-8984/23/49/495303
      [19]
      A. Majumdar and P. Reddy, Role of electron-phonon coupling in thermal conductance of metal–nonmetal interfaces, Appl. Phys. Lett., 84(2004), No. 23, p. 4768. doi: 10.1063/1.1758301
      [20]
      Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, and D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites, Mater. Des., 55(2014), p. 257. doi: 10.1016/j.matdes.2013.09.060
      [21]
      X.Y. Li, W. Park, Y. Wang, Y.P. Chen, and X.L. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer, J. Appl. Phys., 125(2019), No. 4, art. No. 045302. doi: 10.1063/1.5079428
      [22]
      B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179. doi: 10.1007/s12613-020-2031-2
      [23]
      Y. Cui, S.B. Xu, L. Zhang, and S. Guo, Microstructure and thermal properties of diamond–Al composite fabricated by pressureless metal infiltration, Adv. Mater. Res., 150-151(2010), p. 1110. doi: 10.4028/www.scientific.net/AMR.150-151.1110
      [24]
      J.H. Wu, H.L. Zhang, Y. Zhang, J.W. Li, and X.T. Wang, Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites, Mater. Des., 39(2012), p. 87. doi: 10.1016/j.matdes.2012.02.029
      [25]
      T. Schubert, B. Trindade, T. Weißgärber, and B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A, 475(2008), No. 1-2, p. 39. doi: 10.1016/j.msea.2006.12.146
      [26]
      L. Weber and R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites, Scripta Mater., 57(2007), No. 11, p. 988. doi: 10.1016/j.scriptamat.2007.08.007
      [27]
      L.H. Wang, J.W. Li, G.Z. Bai, N. Li, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Interfacial structure evolution and thermal conductivity of Cu–Zr/diamond composites prepared by gas pressure infiltration, J. Alloys Compd., 781(2019), p. 800. doi: 10.1016/j.jallcom.2018.12.053
      [28]
      Z.Q. Tan, Z.Q. Li, G.L. Fan, Q. Guo, X.Z. Kai, G. Ji, L.T. Zhang, and D. Zhang, Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer, Mater. Des., 47(2013), p. 160. doi: 10.1016/j.matdes.2012.11.061
      [29]
      Z.F. Che, Q.X. Wang, L.H. Wang, J.W. Li, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration, Compos. B: Eng., 113(2017), p. 285. doi: 10.1016/j.compositesb.2017.01.047
      [30]
      G. Ji, Z.Q. Tan, Y.G. Lu, D. Schryvers, Z.Q. Li, and D. Zhang, Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite, Mater. Charact., 112(2016), p. 129. doi: 10.1016/j.matchar.2015.12.013
      [31]
      S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372. doi: 10.1016/j.apsusc.2017.01.078
      [32]
      Z.F. Che, J.W. Li, Q.X. Wang, L.H. Wang, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites, Compos. A: Appl. Sci. Manuf., 107(2018), p. 164. doi: 10.1016/j.compositesa.2018.01.002
      [33]
      W.L. Yang, K. Peng, J.J. Zhu, D.Y. Li, and L.P. Zhou, Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer, Diam. Relat. Mater., 46(2014), p. 35. doi: 10.1016/j.diamond.2014.04.007
      [34]
      H.D. Zhang, J.J Zhang, Y. Liu, F. Zhang, T.X. Fan, and D. Zhang, Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface, Scripta Mater., 152(2018), p. 84. doi: 10.1016/j.scriptamat.2018.04.021
      [35]
      S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He, and X.H. Qu, Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy, Compos. Sci. Technol., 71(2011), No. 13, p. 1550. doi: 10.1016/j.compscitech.2011.06.012
      [36]
      L.H. Wang, J.W. Li, Z.F. Che, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites, J. Alloys Compd., 749(2018), p. 1098. doi: 10.1016/j.jallcom.2018.03.241
      [37]
      M.Y. Yuan, Z.Q. Tan, G.L. Fan, D.B. Xiong, Q. Guo, C.P. Guo, Z.Q. Li, and D. Zhang, Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites, Diam. Relat. Mater., 81(2018), p. 38. doi: 10.1016/j.diamond.2017.11.010
      [38]
      A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, and K.J. Kurzydłowski, Diamond–tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des., 76(2015), p. 97. doi: 10.1016/j.matdes.2015.03.056
      [39]
      Y.P. Pan, X.B. He, S.B. Ren, M. Wu, and X.H. Qu, High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles, J. Mater. Sci., 53(2018), No. 12, p. 8978. doi: 10.1007/s10853-018-2184-9
      [40]
      H.H. Zou, H. Bai, J.H. Yu, Y. Wang, Q.L. Liao, K. Nishimura, L.M. Zeng, and N. Jiang, Architecting graphene nanowalls on diamond powder surface, Compos. B: Eng., 73(2015), p. 57. doi: 10.1016/j.compositesb.2014.12.007
      [41]
      H.J. Cao, Z.Q. Tan, M.H. Lu, G. Ji, X.J. Yan, C. Di, M.Y. Yuan, Q. Guo, Y.S. Su, A. Addad, Z.Q. Li, and D.B. Xiong, Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying, Carbon, 150(2019), p. 60. doi: 10.1016/j.carbon.2019.05.004
      [42]
      X.Z. Wu, L.Y. Li, W. Zhang, M.X. Song, W.L. Yang, and K. Peng, Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites, Diam. Relat. Mater., 98(2019), art. No. 107467. doi: 10.1016/j.diamond.2019.107467
      [43]
      L. Zhang, Q.P. Wei, J.J. An, L. Ma, K.C. Zhou, W.T. Ye, Z.M. Yu, X.P. Gan, C.T. Lin, and J.T. Luo, Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management, Chem. Eng. J., 380(2020), art. No. 122551. doi: 10.1016/j.cej.2019.122551
      [44]
      Z.N. Xie, H. Guo, X.M. Zhang, and S.H. Huang, Enhancing thermal conductivity of Diamond/Cu composites by regulating distribution of bimodal diamond particles, Diam. Relat. Mater., 100(2019), art. No. 107564. doi: 10.1016/j.diamond.2019.107564
      [45]
      K. Yoshida and H. Morigami, Thermal properties of diamond/copper composite material, Microelectron. Reliab., 44(2004), No. 2, p. 303. doi: 10.1016/S0026-2714(03)00215-4
      [46]
      H. Chen, C.C. Jia, S.J. Li, X. Jia, and X. Yang, Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 364. doi: 10.1007/s12613-012-0565-7
      [47]
      K. Chu, C.C. Jia, H. Guo, and W.S. Li, On the thermal conductivity of Cu–Zr/diamond composites, Mater. Des., 45(2013), p. 36. doi: 10.1016/j.matdes.2012.09.006
      [48]
      C.Y. Chung, M.T. Lee, M.Y. Tsai, C.H. Chu, and S.J. Lin, High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique, Appl. Therm. Eng., 69(2014), No. 1-2, p. 208. doi: 10.1016/j.applthermaleng.2013.11.065
      [49]
      P. Mańkowski, A. Dominiak, R. Domański, M.J. Kruszewski, and Ł. Ciupiński, Thermal conductivity enhancement of copper–diamond composites by sintering with chromium additive, J. Therm. Anal. Calorim., 116(2014), No. 2, p. 881. doi: 10.1007/s10973-013-3604-3
      [50]
      J. Grzonka, M.J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, and K.J. Kurzydłowski, Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route, Mater. Charact., 99(2015), p. 188. doi: 10.1016/j.matchar.2014.11.032
      [51]
      L.H. Wang, J.W. Li, M. Catalano, G.Z. Bai, N. Li, J.J. Dai, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer, Compos. A: Appl. Sci. Manuf., 113(2018), p. 76. doi: 10.1016/j.compositesa.2018.07.023
      [52]
      P.F. Tao, H. Bai, C. Xue, J.L. Lü, and Z.Y. Zhao, Microstructure and thermal properties of diamond/Al composites, Cemented Carbide, 33(2016), No. 2, p. 102.
      [53]
      C.Y. Guo, X.B. He, S.B. Ren, and X.H. Qu, Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration, J. Alloys Compd., 664(2016), p. 777. doi: 10.1016/j.jallcom.2015.12.255
      [54]
      C.Y. Guo, X.B. He, S.B. Ren, and X.H. Qu, Thermal properties of diamond/Al composites by pressure infiltration: Comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix, Rare Met., 35(2016), No. 3, p. 249. doi: 10.1007/s12598-015-0672-5
      [55]
      W. Cui, H. Xu, J.H. Chen, S.B. Ren, X.B. He, and X.H. Qu, Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 716. doi: 10.1007/s12613-016-1285-1
      [56]
      Ł. Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska, and A. Michalski, Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications, Mater. Des., 120(2017), p. 170. doi: 10.1016/j.matdes.2017.02.005
      [57]
      Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), art. No. 10727. doi: 10.1038/s41598-017-11142-y
      [58]
      J.H. Jia, S.X. Bai, D.G. Xiong, J. Wang, and J. Chang, Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration, Ceram. Int., 45(2019), No. 8, p. 10810. doi: 10.1016/j.ceramint.2019.02.156
      [59]
      S.H. Huang, H. Guo, Z. Zhang, X.M. Zhang, H.F. Xie, Z.N. Xie, L.J. Peng, and X.J. Mi, Comparative study on the properties and microscopic mechanism of Ti coating and W coating diamond–copper composites, Mater. Res. Express, 7(2020), No. 7, art. No. 076517. doi: 10.1088/2053-1591/aba55d
      [60]
      L. Lei, L. Bolzoni, and F. Yang, High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite, Carbon, 168(2020), p. 553. doi: 10.1016/j.carbon.2020.07.001
      [61]
      Y.Q. Li, H.Y. Zhou, C.J. Wu, Z. Yin, C. Liu, Y. Huang, J.Y. Liu, and Z.L. Shi, The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications, Metals, 11(2021), No. 2, art. No. 196. doi: 10.3390/met11020196
      [62]
      C. Xue and J.K. Yu, Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface, Surf. Coat. Technol., 217(2013), p. 46. doi: 10.1016/j.surfcoat.2012.11.070
      [63]
      Y. Zhang, J.W. Li, L.L. Zhao, and X.T. Wang, Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure, J. Mater. Sci., 50(2015), No. 2, p. 688. doi: 10.1007/s10853-014-8628-y
      [64]
      L. Xin, X. Tian, W.S. Yang, G.Q. Chen, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 763(2018), p. 305. doi: 10.1016/j.jallcom.2018.05.310
      [65]
      C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, and N.G. Wang, Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles, J. Mater. Sci.: Mater. Electron., 26(2015), No. 1, p. 185. doi: 10.1007/s10854-014-2381-5
      [66]
      C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, and L. Zhang, Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol., 277(2015), p. 299. doi: 10.1016/j.surfcoat.2015.07.059
      [67]
      X.Z. Wu, D.Q. Wan, W. Zhang, M.X. Song, and K. Peng, Constructing efficient heat transfer channels at the interface of Diamond/Cu composites, Compos. Interfaces, 28(2021), No. 6, p. 625. doi: 10.1080/09276440.2020.1795466
      [68]
      R. Tavangar, J.M. Molina, and L. Weber, Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast, Scripta Mater., 56(2007), No. 5, p. 357. doi: 10.1016/j.scriptamat.2006.11.008
      [69]
      D.P.H. Hasselman and L.F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 21(1987), No. 6, p. 508. doi: 10.1177/002199838702100602
      [70]
      M. Mohr, K. Brühne, and H.J. Fecht, Thermal conductivity of nanocrystalline diamond films grown by hot filament chemical vapor deposition, Phys. Status Solidi A, 213(2016), No. 10, p. 2590. doi: 10.1002/pssa.201600171
      [71]
      G. Chang, F.Y. Sun, J.L. Duan, Z.F. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater., 160(2018), p. 235. doi: 10.1016/j.actamat.2018.09.004
      [72]
      G. Chang, F.Y. Sun, L.H. Wang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance, Compos. A: Appl. Sci. Manuf., 135(2020), art. No. 105921. doi: 10.1016/j.compositesa.2020.105921
      [73]
      U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398. doi: 10.1007/s12613-020-2077-1
      [74]
      X.R. Shi, S.M. Huang, Y. Huang, Y.J. Zhang, S.B. Zong, S.S. Xu, Y.Y. Chen, and P. Ma, Atomic structures and electronic properties of Ni or N modified Cu/diamond interface, J. Phys.: Condens. Matter, 32(2020), No. 22, art. No. 225001. doi: 10.1088/1361-648X/ab686b
      [75]
      C. Monachon, G. Schusteritsch, E. Kaxiras, and L. Weber, Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys., 115(2014), No. 12, art. No. 123509. doi: 10.1063/1.4869668
      [76]
      H.N. Xie, Y.T. Chen, T.B. Zhang, N.Q. Zhao, C.S. Shi, C.N. He, and E.Z. Liu, Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study, Appl. Surf. Sci., 527(2020), art. No. 146817. doi: 10.1016/j.apsusc.2020.146817
      [77]
      L. Chen, S.T. Chen, and Y. Hou, Understanding the thermal conductivity of diamond/copper composites by first-principles calculations, Carbon, 148(2019), p. 249. doi: 10.1016/j.carbon.2019.03.051
      [78]
      C. Zhang, Z.Y. Cai, Y.G. Tang, R.C. Wang, C.Q. Peng, and Y. Feng, Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification, Diam. Relat. Mater., 86(2018), p. 98. doi: 10.1016/j.diamond.2018.04.020
      [79]
      Z.B. Sun, Z.R. Tian, L. Weng, Y. Liu, J.J. Zhang, and T.X. Fan, The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites, J. Appl. Phys., 127(2020), No. 4, art. No. 045101. doi: 10.1063/1.5133982

    Catalog


    • /

      返回文章
      返回