留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1377
  • HTML全文浏览量:  356
  • PDF下载量:  54
  • 被引次数: 0
Jun Zhao, Bin Jiang, Qinghang Wang, Ming Yuan, Yanfu Chai, Guangsheng Huang, and Fusheng Pan, Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1380-1387. https://doi.org/10.1007/s12613-021-2340-0
Cite this article as:
Jun Zhao, Bin Jiang, Qinghang Wang, Ming Yuan, Yanfu Chai, Guangsheng Huang, and Fusheng Pan, Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1380-1387. https://doi.org/10.1007/s12613-021-2340-0
引用本文 PDF XML SpringerLink
研究论文

Li含量对挤压态Mg–1Zn合金显微组织与力学性能的影响

  • 通讯作者:

    蒋斌    E-mail: jiangbinrong@cqu.edu.cn

文章亮点

  • (1) 系统地研究了Li含量对Mg–Zn合金微观组织的影响规律。
  • (2) 研究Li元素添加对Mg–Zn合金力学性能的影响并讨论了其中的微观变形机理。
  • (3) Li元素添加有效激活启动非基面滑移大幅提升Mg–Zn合金塑性。
  • Li元素的添加被认为是提高镁合金室温塑性和成形性的有效方法。本文通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和背散射电子衍射仪(EBSD)研究了Li含量对挤压Mg–1Zn–xLi (x = 0、1、3和5,质量分数,wt%)合金板材的显微组织、织构和拉伸性能。结果表明,随着Li含量的增加,挤压板材的平均晶粒尺寸逐渐长大,并形成了新的沿横向(TD)倾斜的织构和< 101̅0 >平行于挤压方向的织构。主要原因是由于挤压过程中加快了动态再结晶行为和更多的柱面滑移被激活启动。Li的添加无法形成了新的颗粒相。拉伸性能结果表明,Li的添加降低了挤压Mg–1Zn–xLi合金板材的屈服强度,这主要是由于晶粒粗化和织构弱化。此外,Li的添加显著提高了Mg–1Zn–xLi板材的塑性。相比于Mg–1Zn合金板材,Mg–1Zn–5Li合金板材沿TD方向拉伸时延伸率为30.3%,整整提高了三倍。主要原因是由于在室温拉伸过程中更多的柱面滑移被激活启动。本研究可为开发高塑性、低密度的Mg–Zn–Li基合金提供新的思路。
  • Research Article

    Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy

    + Author Affiliations
    • Li addition is verified to be an effective method to increase the room temperature ductility and formability of Mg alloys. In the present study, the microstructure, texture, and tensile properties of the extruded Mg–1Zn–xLi (wt%, x = 0, 1, 3, 5) alloy sheets were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), and electron backscatter diffraction (EBSD). It was found that Li addition resulted in the grain coarsening and the development of new transverse direction (TD)-tilting and $\langle 10\bar{1}0\rangle$ parallel to extrusion direction textures, which was related to the improved dynamic recrystallization and the increased prismatic slip during extrusion. The Mg–1Zn–5Li sheet showed the weakest texture, which contained both basal and TD-tilting oriented grains. No additional phase was formed with Li addition. The yield strength of Mg–1Zn–xLi sheets gradually decreased with increasing Li content, which was mainly related to the grain coarsening and texture weakening. In addition, the ductility of the Mg–1Zn–xLi sheet was remarkably enhanced by Li addition. The elongation of the Mg–1Zn–5Li sheet was 30.3% along the TD, which was three times than that of Mg–1Zn sheet. Microstructural analysis implied that this significant ductility enhancement was associated with the improvement activation of prismatic and basal slips during the tensile tests. This study may provide insights into the development of high-ductility, low-density Mg–Zn–Li based alloys.
    • loading
    • [1]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [2]
      S. Kandemir, S. Gavras, and H. Dieringa, High temperature tensile, compression and creep behavior of recycled short carbon fibre reinforced AZ91 magnesium alloy fabricated by a high shearing dispersion technique, J. Magnes. Alloys, 9(2021), No. 5, p. 1753. doi: 10.1016/j.jma.2021.03.029
      [3]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [4]
      H.F. Zhang, L. Zhou, W.L. Li, G.H. Li, Y.T. Tang, N. Guo, and J.C. Feng, Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 699. doi: 10.1007/s12613-020-2044-x
      [5]
      C. Zhang, L. Wu, Z.L. Zhao, G.S. Huang, B. Jiang, A. Atrens, and F.S. Pan, Effect of the Al-Si eutectic on the microstructure and corrosion behavior of the single-phase Mg alloy Mg–4Li, J. Magnes. Alloys, 9(2021), No. 4, p. 1339. doi: 10.1016/j.jma.2019.08.004
      [6]
      C.Q. Li, Y.B. He, and H.P. Huang, Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 569. doi: 10.1016/j.jma.2020.02.022
      [7]
      H.T. Son, Y.H. Kim, D.W. Kim, J.H. Kim, and H.S. Yu, Effects of Li addition on the microstructure and mechanical properties of Mg–3Zn–1Sn–0.4Mn based alloys, J. Alloys Compd., 564(2013), p. 130. doi: 10.1016/j.jallcom.2013.02.157
      [8]
      B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg–8 wt.%Li alloy, J. Magnes. Alloys, 9(2021), No. 2, p. 560. doi: 10.1016/j.jma.2020.02.020
      [9]
      Y. Zeng, B. Jiang, Q.R. Yang, G.F. Quan, J.J. He, Z.T. Jiang, and F.S. Pan, Effect of Li content on microstructure, texture and mechanical behaviors of the as-extruded Mg–Li sheets, Mater. Sci. Eng. A, 700(2017), p. 59. doi: 10.1016/j.msea.2017.05.110
      [10]
      W.C. Liu, S. Feng, Z.Q. Li, J. Zhao, G.H. Wu, X.F. Wang, L. Xiao, and W.J. Ding, Effect of rolling strain on microstructure and tensile properties of dual-phase Mg–8Li–3Al–2Zn–0.5Y alloy, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2256. doi: 10.1016/j.jmst.2018.05.002
      [11]
      J.S. Leu, C.T. Chiang, S. Lee, Y.H. Chen, and C.L. Chu, Strengthening and room temperature age-softening of super-light Mg–Li alloys, J. Mater. Eng. Perform., 19(2010), No. 9, p. 1235. doi: 10.1007/s11665-010-9606-4
      [12]
      J. Guo, L.L. Chang, Y.R. Zhao, and Y.P. Jin, Effect of Sn and Y addition on the microstructural evolution and mechanical properties of hot-extruded Mg–9Li–3Al alloy, Mater. Charact., 148(2019), p. 35. doi: 10.1016/j.matchar.2018.11.030
      [13]
      G.Y. Sha, X.G. Sun, T. Liu, Y.H. Zhu, and T. Yu, Effects of Sc addition and annealing treatment on the microstructure and mechanical properties of the as-rolled Mg–3Li alloy, J. Mater. Sci. Technol., 27(2011), No. 8, p. 753. doi: 10.1016/S1005-0302(11)60138-2
      [14]
      H.Y. Wang, J. Rong, G.J. Liu, M. Zha, C. Wang, D. Luo, and Q.C. Jiang, Effects of Zn on the microstructure and tensile properties of as-extruded Mg–8Al–2Sn alloy, Mater. Sci. Eng. A, 698(2017), p. 249. doi: 10.1016/j.msea.2017.05.055
      [15]
      H. Ji, G.H. Wu, W.C. Liu, X.L. Liang, G.L. Liao, and D.H. Ding, Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg–xLi–5Zn–0.5Er (x = 8, 10 and 12 wt%) alloys, Mater. Charact., 159(2020), art. No. 110008. doi: 10.1016/j.matchar.2019.110008
      [16]
      Y. Tang, Q.C. Le, R.D.K. Misra, G.Q. Su, and J.Z. Cui, Influence of extruding temperature and heat treatment process on microstructure and mechanical properties of three structures containing Mg–Li alloy bars, Mater. Sci. Eng. A, 712(2018), p. 266. doi: 10.1016/j.msea.2017.11.114
      [17]
      Y.H. Sun, R.C. Wang, J. Ren, C.Q. Peng, and Z.Y. Cai, Microstructure, texture, and mechanical properties of as-extruded Mg–xLi–3Al–2Zn–0.2Zr alloys (x = 5, 7, 8, 9, 11 wt%), Mater. Sci. Eng. A, 755(2019), p. 201. doi: 10.1016/j.msea.2019.04.007
      [18]
      Y.H. Sun, R.C. Wang, C.Q. Peng, and Z.Y. Cai, Microstructure and corrosion behavior of as-extruded Mg–xLi–3Al–2Zn–0.2Zr alloys (x = 5, 8, 11 wt.%), Corros. Sci., 167(2020), art. No. 108487. doi: 10.1016/j.corsci.2020.108487
      [19]
      A. Ahmadieh, J. Mitchell, and J.E. Dorn, Lithium alloying and dislocation mechanisms for prismatic slip in magnesium, Trans. Metall. Soc. AIME, 233(1965), p. 1130.
      [20]
      T. Al-Samman, Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy, Acta Mater., 57(2009), No. 7, p. 2229. doi: 10.1016/j.actamat.2009.01.031
      [21]
      Y. Zeng, B. Jiang, R.H. Li, J.J. He, X.S. Xia, and F.S. Pan, Effect of Li content on microstructure, texture and mechanical properties of cold rolled Mg–3Al–1Zn alloy, Mater. Sci. Eng. A, 631(2015), p. 189. doi: 10.1016/j.msea.2015.02.023
      [22]
      Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411. doi: 10.1016/j.jma.2020.08.005
      [23]
      Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnes. Alloys, 7(2019), No. 4, p. 545. doi: 10.1016/j.jma.2019.09.007
      [24]
      H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
      [25]
      M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, and B.H. Lu, Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion, Acta Mater., 157(2018), p. 53. doi: 10.1016/j.actamat.2018.07.014
      [26]
      S. Ando and H. Tonda, Non-basal slips in magnesium and magnesium-lithium alloy single crystals, Mater. Sci. Forum, 350-351(2000), p. 43. doi: 10.4028/www.scientific.net/MSF.350-351.43
      [27]
      L.W.F. Mackenzie and M. Pekguleryuz, The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys, Mater. Sci. Eng. A, 480(2008), No. 1-2, p. 189. doi: 10.1016/j.msea.2007.07.003
      [28]
      J. Zhao, B. Jiang, Y. Yuan, A.T. Tang, H.R. Sheng, T.H. Yang, G.S. Huang, D.F. Zhang, and F.S. Pan, Influence of Zn addition on the microstructure, tensile properties and work-hardening behavior of Mg-1Gd alloy, Mater. Sci. Eng. A, 772(2020), art. No. 138779. doi: 10.1016/j.msea.2019.138779
      [29]
      N. Hansen, Hall-Petch relation and boundary strengthening, Scripta. Mater., 51(2004), No. 8, p. 801. doi: 10.1016/j.scriptamat.2004.06.002
      [30]
      J. Xu, T.H. Yang, B. Jiang, J.F. Song, J.J. He, Q.H. Wang, Y.F. Chai, G.S. Huang, and F.S. Pan, Improved mechanical properties of Mg–3Al–1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution, J. Alloys Compd., 762(2018), p. 719. doi: 10.1016/j.jallcom.2018.05.083
      [31]
      Q.H. Wang, Y.Q. Shen, B. Jiang, A.T. Tang, J.F. Song, Z.T. Jiang, T.H. Yang, G.S. Huang, and F.S. Pan, A micro-alloyed Mg–Sn–Y alloy with high ductility at room temperature, Mater. Sci. Eng. A, 735(2018), p. 131. doi: 10.1016/j.msea.2018.08.035
      [32]
      J. Zhao, B. Jiang, Y. Yuan, Q.H. Wang, M. Yuan, A.T. Tang, G.S. Huang, D.F. Zhang, and F.S. Pan, Understanding the enhanced ductility of Mg–Gd with Ca and Zn microalloying by slip trace analysis, J. Mater. Sci. Technol., 95(2021), p. 20. doi: 10.1016/j.jmst.2021.02.070
      [33]
      Y.B. Chun and C.H.J. Davies, Investigation of prism 〈a〉 slip in warm-rolled AZ31 alloy, Metall. Mater. Trans. A, 42(2011), p. 4113. doi: 10.1007/s11661-011-0800-2
      [34]
      S. Nandy, S.P. Tsai, L. Stephenson, D. Raabe, and S. Zaefferer, The role of Ca, Al and Zn on room temperature ductility and grain boundary cohesion of magnesium, J. Magnes. Alloys, 9(2021), No. 5, p. 1521. doi: 10.1016/j.jma.2021.03.005
      [35]
      R.H. Li, F.S. Pan, B. Jiang, H.W. Dong, and Q.S. Yang, Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy, Mater. Sci. Eng. A, 562(2013), p. 33. doi: 10.1016/j.msea.2012.11.032
      [36]
      J. Zhao, B. Jiang, A.T. Tang, Y.F. Chai, B. Liu, H.R. Sheng, T.H. Yang, G.S. Huang, D.F. Zhang, and F.S. Pan, Deformation behavior and texture evolution in an extruded Mg–Li sheet with non-basal texture during tensile deformation, Mater. Charact., 159(2020), art. No. 110041. doi: 10.1016/j.matchar.2019.110041
      [37]
      D.B. Xia, G.S. Huang, Q.Y. Deng, B. Jiang, S.S. Liu, and F.S. Pan, Influence of stress state on microstructure evolution of AZ31 Mg alloy rolled sheet during deformation at room temperature, Mater. Sci. Eng. A, 715(2018), p. 379. doi: 10.1016/j.msea.2018.01.017

    Catalog


    • /

      返回文章
      返回