留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  3738
  • HTML全文浏览量:  1179
  • PDF下载量:  296
  • 被引次数: 0
Jiuyao Du, Mengqi Zhang, and Jianjun Tian, Controlled crystal orientation of two-dimensional Ruddlesden–Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 49-58. https://doi.org/10.1007/s12613-021-2341-z
Cite this article as:
Jiuyao Du, Mengqi Zhang, and Jianjun Tian, Controlled crystal orientation of two-dimensional Ruddlesden–Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 49-58. https://doi.org/10.1007/s12613-021-2341-z
引用本文 PDF XML SpringerLink
特约综述

二维Ruddlesden–Popper卤化物钙钛矿薄膜太阳能电池中晶体取向生长调控的研究进展

    * 共同第一作者
  • 通讯作者:

    田建军    E-mail: tianjianjun@mater.ustb.edu.cn

文章亮点

  • (1) 介绍了2D RP相钙钛矿材料的结构和晶体取向。
  • (2) 归纳了制备方法和溶液组分对2D RP相钙钛矿晶体取向的影响。
  • (3) 对2D RP相钙钛矿太阳能电池的研究工作进行了展望。
  • 金属卤化物钙钛矿太阳能电池因其高功率转换效率和良好成本效益的可溶液制备工艺,成为了近年来的研究热点。最先进的钙钛矿太阳能电池的光电转换效率已经超过了25%。然而,金属卤化物钙钛矿的结构和工作稳定性较差成为了其发展和应用的重要障碍之一。二维(2D)Ruddlesden–Popper(RP)钙钛矿结构是钙钛矿八面体层两侧被有机间隔阳离子夹在中间的三明治结构,疏水性有机间隔阳离子有效避免环境因素对钙钛矿结构的影响,显著提升材料和器件的结构和工作稳定性。太阳能电池的工作原理要求2D RP钙钛矿的晶体垂直于基底进行取向生长,从而有利于光生电荷的快速传输和提取。本文旨在总结2D RP钙钛矿太阳能电池中钙钛矿薄膜调控晶体取向的方法,主要归纳了近期关于2D RP钙钛矿薄膜在制备方法和前驱液组分方面对晶体取向机制和调控的影响。近期研究显示,2D RP钙钛矿薄膜的制备已经由传统的一步旋涂法逐渐发展为热辅助法、真空极化法和溶剂蒸汽退火法等。热辅助方法是通过加速中间相的转变来控制二维钙钛矿薄膜的生长方向。溶剂蒸汽退火法是采用溶剂蒸汽来诱导2D相重组。在前驱液组分方面,添加剂和修饰的有机间隔阳离子主要通过官能团与钙钛矿八面体之间的相互作用调控2D RP钙钛矿晶体的生长方向。此外,本文还讨论了当前2D RP钙钛矿太阳能电池目前存在的主要问题,并进行了展望。

  • Invited Review

    Controlled crystal orientation of two-dimensional Ruddlesden–Popper halide perovskite films for solar cells

    + Author Affiliations
    • Metal halide perovskite solar cells have attracted considerable attention because of their high-power conversion efficiency and cost-effective solution-processable fabrication; however, they exhibit poor structural stability. Two-dimensional (2D) Ruddlesden–Popper (RP) perovskites could address the aforementioned issue and present excellent stability because of their hydrophobic organic spacer cations. However, the crystallographic orientation of 2D crystals should be perpendicular to the bottom substrates for charges to transport fast and be collected in solar cells. Moreover, controlling the crystallographic orientation of the 2D RP perovskites prepared by the solution process is difficult. Herein, we reviewed the progress of recent research regarding 2D RP perovskite films with the focus on the crystallographic orientation mechanism and orientation controlling methods. Furthermore, the current issues and prospects of 2D RP perovskites in the photovoltaic field were discussed to elucidate their development and application in the future.

    • loading
    • [1]
      F. Huang, M.J. Li, P. Siffalovic, G.Z. Cao, and J.J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells, Energy Environ. Sci., 12(2019), No. 2, p. 518. doi: 10.1039/C8EE03025A
      [2]
      A.Q. Liu, C.H. Bi, R.Q. Guo, M.Q. Zhang, X.H. Qu, and J.J. Tian, Electroluminescence principle and performance improvement of metal halide perovskite light-emitting diodes, Adv. Opt. Mater., 9(2021), No. 18, art. No. 2002167. doi: 10.1002/adom.202002167
      [3]
      H. Kim, K.G. Lim, and T.W. Lee, Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers, Energy Environ. Sci., 9(2016), No. 1, p. 12. doi: 10.1039/C5EE02194D
      [4]
      C.H. Bi, Z.W. Yao, X.J. Sun, X.C. Wei, J.X. Wang, and J.J. Tian, Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes, Adv. Mater., 33(2021), No. 15, art. No. 2006722. doi: 10.1002/adma.202006722
      [5]
      C.F. Liu, J.F. Yuan, R. Masse, et al., Interphases, interfaces, and surfaces of active materials in rechargeable batteries and perovskite solar cells, Adv. Mater., 33(2021), No. 22, art. No. 1905245. doi: 10.1002/adma.201905245
      [6]
      V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, et al., Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun., 5(2014), art. No. 3586. doi: 10.1038/ncomms4586
      [7]
      B. Li, D. Binks, G.Z. Cao, and J.J. Tian, Engineering halide perovskite crystals through precursor chemistry, Small, 15(2019), No. 47, art. No. 1903613. doi: 10.1002/smll.201903613
      [8]
      C.H. Bi, X.J. Sun, X. Huang, et al., Stable CsPb1–xZnxI3 colloidal quantum dots with ultralow density of trap states for high-performance solar cells, Chem. Mater., 32(2020), No. 14, p. 6105. doi: 10.1021/acs.chemmater.0c01750
      [9]
      T. Yang, Y.P. Zheng, K.C. Chou, and X.M. Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1030. doi: 10.1007/s12613-020-2173-2
      [10]
      D.W. De Quilettes, S.M. Vorpahl, S.D. Stranks, et al, Impact of microstructure on local carrier lifetime in perovskite solar cells, Science, 348(2015), No. 6235, p. 683. doi: 10.1126/science.aaa5333
      [11]
      J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amount of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., (2021). DOI:10.1007/s12613-021-2316-0
      [12]
      D. Zhang, J.F. Yuan, and J.J. Tian, All-inorganic perovskite solar cells with efficiency >20%, Sci. China Mater., 64(2021), No. 10, p. 2624. doi: 10.1007/s40843-021-1726-9
      [13]
      H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
      [14]
      D. Weber, CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur / CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure, Z. Naturforsch. B, 33(1978), No. 12, p. 1443. doi: 10.1515/znb-1978-1214
      [15]
      A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
      [16]
      H.S. Kim, C.R. Lee, J.H. Im, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2(2012), art. No. 591. doi: 10.1038/srep00591
      [17]
      X.Z. Yu, Y. Qin, and Q. Peng, Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy, J. Phys. Chem. A, 121(2017), No. 6, p. 1169. doi: 10.1021/acs.jpca.6b12170
      [18]
      Y.P. Xia, P.H. Wang, S.W. Shi, et al., Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 675. doi: 10.1007/s12613-017-1450-1
      [19]
      G. Tumen-Ulzii, C.J. Qin, D. Klotz, et al., Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells, Adv. Mater., 32(2020), No. 16, art. No. 1905035. doi: 10.1002/adma.201905035
      [20]
      H.T. Wei, S.S. Chen, J.J. Zhao, Z.H. Yu, and J.S. Huang, Is formamidinium always more stable than methylammonium?, Chem. Mater., 32(2020), No. 6, p. 2501. doi: 10.1021/acs.chemmater.9b05101
      [21]
      L. McGovern, I. Koschany, G. Grimaldi, L.A. Muscarella, and B. Ehrler, Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells, J. Phys. Chem. Lett., 12(2021), No. 9, p. 2423. doi: 10.1021/acs.jpclett.1c00205
      [22]
      P. Chen, Y. Bai, S.C. Wang, M.Q. Lyu, J.H. Yun, and L.Z. Wang, In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1706923. doi: 10.1002/adfm.201706923
      [23]
      J. Zhuang, P. Mao, Y.G. Luan, et al., Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide, ACS Energy Lett., 4(2019), No. 12, p. 2913. doi: 10.1021/acsenergylett.9b02375
      [24]
      C.L. Zhang, S.H. Wu, L.M. Tao, et al., Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002004. doi: 10.1002/aenm.202002004
      [25]
      Y.H. Wu, Y. Ding, X.Y. Liu, et al., Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer, Sci. China Mater., 63(2020), No. 1, p. 47. doi: 10.1007/s40843-019-1174-3
      [26]
      H.Y. Zheng, S.Y. Dai, K.X. Zhou, et al., New-type highly stable 2D/3D perovskite materials: The effect of introducing ammonium cation on performance of perovskite solar cells, Sci. China Mater., 62(2019), No. 4, p. 508. doi: 10.1007/s40843-018-9343-1
      [27]
      Y.H. Liu, S. Akin, A. Hinderhofer, et al., Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers, Angew. Chem. Int. Ed., 59(2020), No. 36, p. 15688. doi: 10.1002/anie.202005211
      [28]
      C.T. Zuo, A.D. Scully, W.L. Tan, et al, Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells, Commun. Mater., 1(2020), art. No. 33. doi: 10.1038/s43246-020-0036-z
      [29]
      Y. Li, J.V. Milić, A. Ummadisingu, et al, Bifunctional organic spacers for formamidinium-based hybrid Dion−Jacobson two-dimensional perovskite solar cells, Nano Lett., 19(2019), No. 1, p. 150. doi: 10.1021/acs.nanolett.8b03552
      [30]
      B.E. Cohen, Y.M. Li, Q.B. Meng, and L. Etgar, Dion−Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation, Nano Lett., 19(2019), No. 4, p. 2588. doi: 10.1021/acs.nanolett.9b00387
      [31]
      F.Z. Li, J. Zhang, S.B. Jo, et al., Vertical orientated Dion−Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability, Small Methods, 4(2020), No. 5, art. No. 1900831. doi: 10.1002/smtd.201900831
      [32]
      D. Lu, G.W. Lv, Z.Y. Xu, Y.X. Dong, X.F. Ji, and Y.S. Liu, Thiophene-based two-dimensional Dion−Jacobson perovskite solar cells with over 15% efficiency, J. Am. Chem. Soc., 142(2020), No. 25, p. 11114. doi: 10.1021/jacs.0c03363
      [33]
      H.T. Wu, X.M. Lian, S.X. Tian, et al., Additive assisted hot-casting free fabrication of Dion-Jacobson 2D perovskite solar cell with efficiency beyond 16%, Sol. RRL, 4(2020), No. 7, art. No. 2000087. doi: 10.1002/solr.202000087
      [34]
      W.D. Zhao, Q.S. Dong, J.W. Zhang, et al., Asymmetric alkyl diamine based Dion–Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%, J. Mater. Chem. A, 8(2020), No. 19, p. 9919. doi: 10.1039/D0TA02706E
      [35]
      H. Wang, Z.T. Qin, J.S. Xie, et al., Efficient slantwise aligned Dion−Jacobson phase perovskite solar cells based on trans-1, 4-cyclohexanediamine, Small, 16(2020), No. 42, art. No. 2003098. doi: 10.1002/smll.202003098
      [36]
      J. Kim, W. Lee, K. Cho, et al., Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden–Popper perovskite photodetectors, Nanotechnol., 32(2021), No. 18, art. No. 185203. doi: 10.1088/1361-6528/abe003
      [37]
      B. Hwang, Y. Park, and J.S. Lee, Impact of grain size on the optoelectronic performance of 2D Ruddlesden–Popper perovskite-based photodetectors, J. Mater. Chem. C, 9(2021), No. 1, p. 110. doi: 10.1039/D0TC04350H
      [38]
      G. Jang, S. Ma, H.C. Kwon, et al., Elucidation of the formation mechanism of highly oriented multiphase Ruddlesden–Popper perovskite solar cells, ACS Energy Lett., 6(2021), No. 1, p. 249. doi: 10.1021/acsenergylett.0c02438
      [39]
      J.S. Shi, X. Jin, Y.Z. Wu, and M. Shao, Mixed bulky cations for efficient and stable Ruddlesden−Popper perovskite solar cells, APL Mater., 8(2020), No. 10, art. No. 101102. doi: 10.1063/5.0024135
      [40]
      X.L. Tang, X.Y. Wang, T. Hu, et al., Concerted regulation on vertical orientation and film quality of two-dimensional Ruddlesden−Popper perovskite layer for efficient solar cells, Sci. China Chem., 63(2020), No. 11, p. 1675. doi: 10.1007/s11426-020-9812-6
      [41]
      J.M. Yang, S.B. Xiong, J.N. Song, et al., Energetics and energy loss in 2D Ruddlesden−Popper perovskite solar cells, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000687. doi: 10.1002/aenm.202000687
      [42]
      Y. Qin, H.J. Zhong, J.J. Intemann, et al., Coordination engineering of single-crystal precursor for phase control in Ruddlesden−Popper perovskite solar cells, Adv. Energy Mater., 10(2020), No. 16, art. No. 1904050. doi: 10.1002/aenm.201904050
      [43]
      S.N. Ruddlesden and P. Popper, New compounds of the K2NIF4 type, Acta Cryst., 10(1957), No. 8, p. 538. doi: 10.1107/S0365110X57001929
      [44]
      I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, and H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angew. Chem. Int. Ed., 53(2014), No. 42, p. 11232. doi: 10.1002/anie.201406466
      [45]
      T. Zhang, M.I. Dar, G. Li, et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells, Sci. Adv., 3(2017), No. 9, art. No. e1700841. doi: 10.1126/sciadv.1700841
      [46]
      L. Etgar, The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite, Energy Environ. Sci., 11(2018), No. 2, p. 234. doi: 10.1039/C7EE03397D
      [47]
      S. Yang, Y. Wang, P.R. Liu, Y.B. Cheng, H.J. Zhao, and H.G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules, Nat. Energy, 1(2016), art. No. 15016. doi: 10.1038/nenergy.2015.16
      [48]
      H.J. Jung, C.C. Stompus, M.G. Kanatzidis, and V.P. Dravid, Self-passivation of 2D Ruddlesden–Popper perovskite by polytypic surface PbI2 encapsulation, Nano Lett., 19(2019), No. 9, p. 6109. doi: 10.1021/acs.nanolett.9b02069
      [49]
      Y. Lin, Y. Bai, Y.J. Fang, Q. Wang, Y.H. Deng, and J.S. Huang, Suppressed ion migration in low-dimensional perovskites, ACS Energy Lett., 2(2017), No. 7, p. 1571. doi: 10.1021/acsenergylett.7b00442
      [50]
      G.B. Wu, T.H. Yang, X. Li, et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%, Matter, 4(2021), No. 2, p. 582. doi: 10.1016/j.matt.2020.11.011
      [51]
      R. Yang, R.Z. Li, Y. Cao, et al, Oriented quasi-2D perovskites for high performance optoelectronic devices, Adv. Mater., 30(2018), No. 51, art. No. 1804771. doi: 10.1002/adma.201804771
      [52]
      Y. Yang, C. Liu, O.A. Syzgantseva, et al., Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway, Adv. Energy Mater., 11(2021), No. 1, art. No. 2002966. doi: 10.1002/aenm.202002966
      [53]
      H.T. Lai, D. Lu, Z.Y. Xu, N. Zheng, Z.Q. Xie, and Y.S. Liu, Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden−Popper perovskites for solar cells with efficiency over 19%, Adv. Mater., 32(2020), No. 33, art. No. 2001470. doi: 10.1002/adma.202001470
      [54]
      D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, and M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications, J. Am. Chem. Soc., 137(2015), No. 24, p. 7843. doi: 10.1021/jacs.5b03796
      [55]
      J.Z. Li, J. Wang, Y.J. Zhang, et al., Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation, 2D Mater., 5(2018), No. 2, art. No. 021001. doi: 10.1088/2053-1583/aaa5d4
      [56]
      L.N. Quan, M.J. Yuan, R. Comin, et al., Ligand-stabilized reduced-dimensionality perovskites, J. Am. Chem. Soc., 138(2016), No. 8, p. 2649. doi: 10.1021/jacs.5b11740
      [57]
      C.C. Stoumpos, D.H. Cao, D.J. Clark, et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors, Chem. Mater., 28(2016), No. 8, p. 2852. doi: 10.1021/acs.chemmater.6b00847
      [58]
      W.J. Wei, X.X. Jiang, L.Y. Dong, et al., Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets, J. Am. Chem. Soc., 141(2019), No. 23, p. 9134. doi: 10.1021/jacs.9b01874
      [59]
      X. Hong, T. Ishihara, and A.V. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors, Phys. Rev. B, 45(1992), No. 12, p. 6961. doi: 10.1103/PhysRevB.45.6961
      [60]
      D.H. Cao, C.C. Stoumpos, T. Yokoyama, et al., Thin films and solar cells based on semiconducting two-dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n–1SnnI3n+1 perovskites, ACS Energy Lett., 2(2017), No. 5, p. 982. doi: 10.1021/acsenergylett.7b00202
      [61]
      A.Z. Chen, M. Shiu, J.H. Ma, et al, Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance, Nat. Commun., 9(2018), art. No. 1336. doi: 10.1038/s41467-018-03757-0
      [62]
      M. Konstantakou, D. Perganti, P. Falaras, and T. Stergiopoulos, Anti-solvent crystallization strategies for highly efficient perovskite solar cells, Crystals, 7(2017), No. 10, art. No. 291. doi: 10.3390/cryst7100291
      [63]
      M. Zhang, Z.H. Wang, B. Zhou, et al., Green anti-solvent processed planar perovskite solar cells with efficiency beyond 19%, Sol. RRL, 2(2018), No. 2, art. No. 1700213. doi: 10.1002/solr.201700213
      [64]
      Y.F. Wang, J. Wu, P. Zhang, et al., Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells, Nano Energy, 39(2017), p. 616. doi: 10.1016/j.nanoen.2017.07.046
      [65]
      D. Prochowicz, M.M. Tavakoli, A. Solanki, et al., Understanding the effect of chlorobenzene and isopropanol anti-solvent treatments on the recombination and interfacial charge accumulation in efficient planar perovskite solar cells, J. Mater. Chem. A, 6(2018), No. 29, p. 14307. doi: 10.1039/C8TA03782E
      [66]
      Y. Li, J.A. Wang, Y. Yuan, X.D. Dong, and P. Wang, Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: The role of intermediate phase content in the as-prepared thin films, Sustainable Energy Fuels, 1(2017), No. 5, p. 1041. doi: 10.1039/C7SE00125H
      [67]
      Y.X. Dong, D. Lu, Z.Y. Xu, H.T. Lai, and Y.S. Liu, 2-thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis, Adv. Energy Mater., 10(2020), No. 28, art. No. 2000694. doi: 10.1002/aenm.202000694
      [68]
      M.J. Li, B. Li, G.Z. Cao, and J.J. Tian, Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process, J. Mater. Chem. A, 5(2017), No. 40, p. 21313. doi: 10.1039/C7TA06766F
      [69]
      H.C. Liao, P.J. Guo, C.P. Hsu, et al., Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation, Adv. Energy Mater., 7(2017), No. 8, art. No. 1601660. doi: 10.1002/aenm.201601660
      [70]
      W.Y. Nie, H. Tsai, R. Asadpour, et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347(2015), No. 6221, p. 522. doi: 10.1126/science.aaa0472
      [71]
      Z. Wang, X.D. Liu, Y.W. Lin, et al, Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells, J. Mater. Chem. A, 7(2019), No. 6, p. 2773. doi: 10.1039/C8TA09855G
      [72]
      G.B. Wu, J.Y. Zhou, J.Q. Zhang, et al, Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability, Nano Energy, 58(2019), p. 706. doi: 10.1016/j.nanoen.2019.02.002
      [73]
      G.S. Shin, W.G. Choi, S. Na, F.P. Gökdemir, and T. Moon, Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells, Electron. Mater. Lett., 14(2018), No. 2, p. 155. doi: 10.1007/s13391-018-0042-1
      [74]
      H. Tsai, W.Y. Nie, J.C. Blancon, et al, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536(2016), No. 7616, p. 312. doi: 10.1038/nature18306
      [75]
      F.D. Wang, Y.Y. Wang, Y.H. Liu, P.J. Morrison, R.A. Loomis, and W.E. Buhro, Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates, Acc. Chem. Res., 48(2015), No. 1, p. 13. doi: 10.1021/ar500286j
      [76]
      A. Riedinger, F.D. Ott, A. Mule, et al., An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets, Nat. Mater., 16(2017), No. 7, p. 743. doi: 10.1038/nmat4889
      [77]
      R. Quintero-Bermudez, A. Gold-Parker, A.H. Proppe, et al., Compositional and orientational control in metal halide perovskites of reduced dimensionality, Nat. Mater., 17(2018), No. 10, p. 900. doi: 10.1038/s41563-018-0154-x
      [78]
      S.Y. Shao, H. Duim, Q.Q. Wang, et al., Tuning the energetic landscape of Ruddlesden−Popper perovskite films for efficient solar cells, ACS Energy Lett., 5(2020), No. 1, p. 39. doi: 10.1021/acsenergylett.9b02397
      [79]
      J. Zhang, J.J. Qin, M.S. Wang, et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells, Joule, 3(2019), No. 12, p. 3061. doi: 10.1016/j.joule.2019.09.020
      [80]
      X.M. Zhao, T.R. Liu, A.B. Kaplan, C. Yao, and Y.L. Loo, Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells, Nano Lett., 20(2020), No. 12, p. 8880. doi: 10.1021/acs.nanolett.0c03914
      [81]
      X.Q. Zhang, G. Wu, W.F. Fu, et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%, Adv. Energy Mater., 8(2018), No. 14, art. No. 1702498. doi: 10.1002/aenm.201702498
      [82]
      W.F. Fu, J. Wang, L.J. Zuo, et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency, ACS Energy Lett., 3(2018), No. 9, p. 2086. doi: 10.1021/acsenergylett.8b01181
      [83]
      F. Huang, P. Siffalovic, B. Li, et al., Controlled crystallinity and morphologies of 2D Ruddlesden−Popper perovskite films grown without anti-solvent for solar cells, Chem. Eng. J., 394(2020), art. No. 124959. doi: 10.1016/j.cej.2020.124959
      [84]
      F. Zheng, C.T. Zuo, M.S. Niu, et al., Revealing the role of methylammonium chloride for improving the performance of 2D perovskite solar cells, ACS Appl. Mater. Interfaces, 12(2020), No. 23, p. 25980. doi: 10.1021/acsami.0c05714
      [85]
      C.M.M. Soe, W.Y. Nie, C.C. Stoumpos, et al., Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high-efficiency solar cells, Adv. Energy Mater., 8(2018), No. 1, art. No. 1700979. doi: 10.1002/aenm.201700979
      [86]
      J. Qiu, Y.T. Zheng, Y.D. Xia, et al., Rapid crystallization for efficient 2D Ruddlesden–Popper (2DRP) perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1806831. doi: 10.1002/adfm.201806831
      [87]
      X. Zhang, X.D. Ren, B. Liu, et al., Stable high efficiency two-dimensional perovskite solar cells via cesium doping, Energy Environ. Sci., 10(2017), No. 10, p. 2095. doi: 10.1039/C7EE01145H
      [88]
      N. Zhou, Y.H. Shen, L. Li, et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells, J. Am. Chem. Soc., 140(2018), No. 1, p. 459. doi: 10.1021/jacs.7b11157
      [89]
      J.S. Shi, Y.R. Gao, X. Gao, et al., Fluorinated low-dimensional Ruddlesden−Popper perovskite solar cells with over 17% power conversion efficiency and improved stability, Adv. Mater., 31(2019), No. 37, art. No. 1901673. doi: 10.1002/adma.201901673
      [90]
      H. Ren, S.D. Yu, L.F. Chao, et al., Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction, Nat. Photonics, 14(2020), No. 3, p. 154. doi: 10.1038/s41566-019-0572-6
      [91]
      Y.N. Chen, Y. Sun, J.J. Peng, et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells, Adv. Energy Mater., 7(2017), No. 18, art. No. 1700162. doi: 10.1002/aenm.201700162
      [92]
      N. Zhou, B.L. Huang, M.Z. Sun, et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells, Adv. Energy Mater., 10(2020), No. 1, art. No. 1901566. doi: 10.1002/aenm.201901566
      [93]
      C. Liang, H. Gu, Y.D. Xia, et al., Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films, Nat. Energy, 6(2021), No. 1, p. 38. doi: 10.1038/s41560-020-00721-5

    Catalog


    • /

      返回文章
      返回