留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1959
  • HTML全文浏览量:  677
  • PDF下载量:  94
  • 被引次数: 0
Ruiqing Lu, Long Zhang, Shuwei Zheng, Dingfa Fu, Jie Teng, Jianchun Chen, Guodong Zhao, Fulin Jiang,  and Hui Zhang, Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 108-118. https://doi.org/10.1007/s12613-021-2342-y
Cite this article as:
Ruiqing Lu, Long Zhang, Shuwei Zheng, Dingfa Fu, Jie Teng, Jianchun Chen, Guodong Zhao, Fulin Jiang,  and Hui Zhang, Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 108-118. https://doi.org/10.1007/s12613-021-2342-y
引用本文 PDF XML SpringerLink
研究论文

新型循环连续扩展挤压和拉拔工艺对Al–Mg合金的显微组织、力学性能和变形机制研究

  • 通讯作者:

    傅定发    E-mail: hunu_fudingfa@163.com

    滕杰    E-mail: tengjie@hnu.edu.cn

文章亮点

  • (1) 成功设计出循环连续扩展挤压与拉拔工艺,并制得多道次Al–Mg合金样品。
  • (2) 剧烈的塑性变形及累积应变显著细化了Al–Mg合金的晶粒尺寸,提升了合金的强度及塑性。
  • (3) 独特的冷热交替变形机制大幅提升了多道次Al–Mg合金的显微组织均匀性。
  • Al–Mg 系铝合金具有较高的机械强度以及优良的可加工性、可焊接性等优点,广泛应用于船舶、军工和航空航天等领域。然而如何进一步提升Al–Mg合金综合力学性能,拓展其应用范围,成为材料科学工作者与工程技术人员追求的目标。大塑性变形(SPD)作为一种能够有效细化金属晶粒进而大幅提升金属材料力学性能的方法获得了越来越多的关注。本文系统研究了一种新型循环连续扩展挤压与拉拔大塑性变形工艺对Al–Mg合金显微组织、力学性能及变形机理的影响。首先通过新型循环连续扩展挤压与拉拔工艺(CCEED)成功制备出3道次挤压和拉拔Al–Mg合金杆料。然后系统介绍了加工样品随着道次增加显微组织及力学性能的演变规律,并结合晶粒尺寸演变模型成功预测了Al–Mg合金晶粒尺寸随加工温度的变化趋势,为指导实际工业生产奠定理论基础。研究结果表明,连续挤压作为一种连续塑性变形加工工艺,能够高效生产超长尺寸金属型材。晶粒细化能够大幅提升Al–Mg合金综合力学性能;冷变形加工(拉拔)能够引入大量位错亚结构,能够进一步细化晶粒尺寸提升力学性能。随着加工道次的增加,由于多道次交叉剪切变形机制,加工样品硬度分布的均匀性逐渐提高。连续扩展挤压主要提高了合金塑性,而冷拔则提高了合金的强度。由于快速的动态恢复速度,加工样品产生了强度饱和现象。循环连续扩展挤压与拉拔循环连续扩展挤压与拉拔处理后,通过连续动态再结晶逐渐细化Al–Mg合金棒材的晶粒尺寸。在挤压试样中,获得了具有许多细亚晶粒的等轴晶粒。对于冷拔试样,观察到具有大量胞状结构和位错的细长晶粒。循环连续扩展挤压与拉拔过程中的微观结构演变基本上受特殊热机械变形条件的影响。 冷拔引入了大量位错并促进了连续动态再结晶以获得细晶。连续动态再结晶在较高温度(500°C)挤压过程中,晶界迁移率(M)显着增加,导致晶粒的快速生长并限制了Al–Mg合金的晶粒细化。最后,本文对未来连续挤压工艺研究工作进行了展望。在连续挤压转速较高的变形条件下,Al–Mg合金晶粒细化的程度有限。在不改变原有Al–Mg合金成分的前提下,即不添加Sc、Zr等微量元素,需尝试降低连续挤压转速,增加连续挤压的冷却系统或冷却频次,并对现有连续挤压槽封块、进料块及其接触长度(包角大小)进行工模具优化设计从而使连续挤压塑性变形区和直接挤压变形区内温度控制在400°C以内。同时较小的扩展尺寸,变形腔内无法获得足够的附加剪切应变,这也限制了晶粒尺寸进一步细化。

  • Research Article

    Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach

    + Author Affiliations
    • Al–Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mechanical properties and plastic deformation behaviors. In this work, a cyclical continuous expanded extrusion and drawing (CCEED) process was proposed and implemented on an Al–3Mg alloy to introduce large plastic deformation. The results showed that the continuous expanded extrusion mainly improved the ductility, while the cold drawing enhanced the strength of the alloy. With the increased processing CCEED passes, the multi-pass cross shear deformation mechanism progressively improved the homogeneity of the hardness distributions and refined grain size. Continuous dynamic recrystallization played an important role in the grain refinement of the processed Al–3Mg alloy rods. Besides, the microstructural evolution was basically influenced by the special thermomechanical deformation conditions during the CCEED process.

    • loading
    • [1]
      H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2011.
      [2]
      Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61(2013), No. 3, p. 782. doi: 10.1016/j.actamat.2012.10.038
      [3]
      M. Kuzmina, D. Ponge, and D. Raabe, Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel, Acta Mater., 86(2015), p. 182. doi: 10.1016/j.actamat.2014.12.021
      [4]
      C.Q. Huang, J.X. Liu, and X.D. Jia, Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1140. doi: 10.1007/s12613-019-1852-3
      [5]
      R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A, 168(1993), No. 2, p. 141. doi: 10.1016/0921-5093(93)90717-S
      [6]
      I. Sabirov, N.A. Enikeev, M.Y. Murashkin, and R.Z. Valiev, Bulk Nanostructured Materials with Multifunctional Properties, Springer, Cham, 2015.
      [7]
      G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation Methods: Processing and Properties, Elsevier, 2018.
      [8]
      R. Kalsar, D. Yadav, A. Sharma, H.G. Brokmeier, J. May, H.W. Höppel, W. Skrotzki, and S. Suwas, Effect of Mg content on microstructure, texture and strength of severely equal channel angular pressed aluminium-magnesium alloys, Mater. Sci. Eng. A, 797(2020), art. No. 140088. doi: 10.1016/j.msea.2020.140088
      [9]
      T. Radetić, M. Popović, E. Romhanji, and B. Verlinden, The effect of ECAP and Cu addition on the aging response and grain substructure evolution in an Al–4.4wt.% Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 3, p. 634. doi: 10.1016/j.msea.2009.08.037
      [10]
      L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, C. Braham, C. Reyes-Ruiz, I. Alfonso, and G. González, Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 801. doi: 10.1007/s12613-020-2017-0
      [11]
      Z.J. Yang, K.K. Wang, and Y. Yang, Optimization of ECAP−RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 792. doi: 10.1007/s12613-019-1895-5
      [12]
      A. Deschamps, F. de Geuser, Z. Horita, S. Lee, and G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Mater., 66(2014), p. 105. doi: 10.1016/j.actamat.2013.11.071
      [13]
      P. Bazarnik, Y. Huang, M. Lewandowska, and T.G. Langdon, Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 626(2015), p. 9. doi: 10.1016/j.msea.2014.12.027
      [14]
      H.S. Liu, B. Zhang, and G.P. Zhang, Microstructures and mechanical properties of Al/Mg alloy multilayered composites produced by accumulative roll bonding, J. Mater. Sci. Technol., 27(2011), No. 1, p. 15. doi: 10.1016/S1005-0302(11)60019-4
      [15]
      H. Sheikh, Role of shear banding on the microtexture of an Al–Mg alloy processed by hot/high strain rate accumulative roll bonding, Scripta Mater., 64(2011), No. 6, p. 556. doi: 10.1016/j.scriptamat.2010.11.041
      [16]
      X.H. Yang, D.G. Wang, Z.G. Wu, J.H. Yi, S. Ni, Y. Du, and M. Song, A coupled EBSD/TEM study of the microstructural evolution of multi-axial compressed pure Al and Al–Mg alloy, Mater. Sci. Eng. A, 658(2016), p. 16. doi: 10.1016/j.msea.2016.01.080
      [17]
      R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of superior properties in bulk NanoSPD materials, Mater. Res. Lett., 4(2016), No. 1, p. 1. doi: 10.1080/21663831.2015.1060543
      [18]
      W.L. Gao, J. Xu, J. Teng, and Z. Lu, Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion, J. Mater. Res., 31(2016), No. 16, p. 2506. doi: 10.1557/jmr.2016.235
      [19]
      H. S. Chu, K. S. Liu, and J. W. Yeh, An in situ composite of Al (graphite, Al4C3) produced by reciprocating extrusion, Mater. Sci. Eng. A, 277(2000), No. 1-2, p. 25. doi: 10.1016/S0921-5093(99)00562-6
      [20]
      J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater., 49(2001), No. 9, p. 1497. doi: 10.1016/S1359-6454(01)00069-6
      [21]
      H. Utsunomiya, K. Hatsuda, T. Sakai, and Y. Saito, Continuous grain refinement of aluminum strip by conshearing, Mater. Sci. Eng. A, 372(2004), No. 1-2, p. 199. doi: 10.1016/j.msea.2003.12.014
      [22]
      M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R.Z. Valiev, Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP–Conform, Metals, 5(2015), No. 4, p. 2148. doi: 10.3390/met5042148
      [23]
      C. Etherington, Conform—A new concept for the continuous extrusion forming of metals, J. Eng. Ind., 96(1974), No. 3, p. 893. doi: 10.1115/1.3438458
      [24]
      D.S. Peng, B.Q. Yao, and T.Y. Zuo, The experimental simulation of deformation behavior of metals in the conform process, J. Mater. Process. Technol., 31(1992), No. 1-2, p. 85. doi: 10.1016/0924-0136(92)90009-H
      [25]
      H. Zhang, Q.Q. Yan, and L.X. Li, Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process, Mater. Sci. Eng. A, 486(2008), No. 1-2, p. 295. doi: 10.1016/j.msea.2007.09.001
      [26]
      G.J. Raab, R.Z. Valiev, T.C. Lowe and Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP–Conform, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 30. doi: 10.1016/j.msea.2004.04.021
      [27]
      J.F. Derakhshan, M.H. Parsa, and H.R. Jafarian, Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP–Conform process, Mater. Sci. Eng. A, 747(2019), p. 120. doi: 10.1016/j.msea.2019.01.058
      [28]
      C. Xu, S. Schroeder, P.B. Berbon, and T.G. Langdon, Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy, Acta Mater., 58(2010), No. 4, p. 1379. doi: 10.1016/j.actamat.2009.10.044
      [29]
      A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716. doi: 10.1016/j.cirp.2008.09.005
      [30]
      V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev, Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater. Sci. Eng. A, 303(2001), No. 1-2, p. 82. doi: 10.1016/S0921-5093(00)01884-0
      [31]
      K.T. Park, H.J. Lee, C.S. Lee, W.J. Nam, and D.H. Shin, Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing, Scripta. Mater., 51(2004), No. 6, p. 479. doi: 10.1016/j.scriptamat.2004.06.001
      [32]
      K.T. Park, H.J. Lee, C.S. Lee, and D.H. Shin, Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al–Mg alloy at 723 K, Mater. Sci. Eng. A, 393(2005), No. 1-2, p. 118. doi: 10.1016/j.msea.2004.09.066
      [33]
      R.Q. Lu, S.W. Zheng, J. Teng, J.M. Hu, D.F. Fu, J.C. Chen, G.D. Zhao, F.L. Jiang, and H. Zhang, Microstructure, mechanical properties and deformation characteristics of Al–Mg–Si alloys processed by a continuous expansion extrusion approach, J. Mater. Sci. Technol., 80(2021), p. 150. doi: 10.1016/j.jmst.2020.11.055
      [34]
      F.L. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, and T. Tsuchiyama, Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling, Int. J. Plast., 129(2020), art. No. 102700. doi: 10.1016/j.ijplas.2020.102700
      [35]
      F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al–Mg alloy prepared by cryogenic ball milling, Acta Mater., 51(2003), No. 10, p. 2777. doi: 10.1016/S1359-6454(03)00083-1
      [36]
      A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, and S. Suwas, Hot deformation behaviour of Mo-TZM and understanding the restoration processes involved, Acta Mater., 164(2019), p. 153. doi: 10.1016/j.actamat.2018.10.037
      [37]
      R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous dynamic recrystallization in α-Zr, Mater. Sci. Eng. A, 718(2018), p. 104. doi: 10.1016/j.msea.2018.01.117
      [38]
      T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
      [39]
      D.G. Morris and M.A. Muñoz-Morris, Microstructure of severely deformed Al–3Mg and its evolution during annealing, Acta Mater., 50(2002), No. 16, p. 4047. doi: 10.1016/S1359-6454(02)00203-3
      [40]
      K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
      [41]
      R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Continuous dynamic recrystallization in an Al–L–Mg–Sc alloy during equal-channel angular extrusion, Mater. Sci. Eng. A, 396(2005), No. 1-2, p. 341. doi: 10.1016/j.msea.2005.01.053
      [42]
      N. Su, R.G. Guan, X. Wang, Y.X. Wang, W.S. Jiang, and H.N. Liu, Grain refinement in an Al–Er alloy during accumulative continuous extrusion forming, J. Alloys Compd., 680(2016), p. 283. doi: 10.1016/j.jallcom.2016.04.137
      [43]
      Y.X. Wang, R.G. Guan, D.W. Hou, Y. Zhang, W.S. Jiang, and H.N. Liu, The effects of eutectic silicon on grain refinement in an Al–Si alloy processed by accumulative continuous extrusion forming, J. Mater. Sci., 52(2017), No. 2, p. 1137. doi: 10.1007/s10853-016-0409-3
      [44]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Amsterdam, Elsevier, 2004.
      [45]
      Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra, Ultrafine-grained Al–0.2Sc–0.1Zr alloy: The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion, Acta Mater., 100(2015), p. 247. doi: 10.1016/j.actamat.2015.08.043
      [46]
      Z. Aretxabaleta, B. Pereda, and B. López, Analysis of the effect of Al on the static softening kinetics of C–Mn steels using a physically based model, Metall. Mater. Trans. A, 45(2014), No. 2, p. 934. doi: 10.1007/s11661-013-2014-2
      [47]
      M.K. Rehman and H.S. Zurob, A novel approach to model static recrystallization of austenite during hot rolling of Nb microalloyed steel. part I: Precipitate-free case, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1862. doi: 10.1007/s11661-012-1526-5
      [48]
      J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall., 10(1962), No. 9, p. 789. doi: 10.1016/0001-6160(62)90092-5
      [49]
      E.A. Simielli, S. Yue, and J.J. Jonas, Recrystallization kinetics of microalloyed steels deformed in the intercritical region, Metall. Trans. A, 23(1992), No. 2, p. 597. doi: 10.1007/BF02801177
      [50]
      A. Lens, C. Maurice, and J.H. Driver, Grain boundary mobilities during recrystallization of Al–Mn alloys as measured by in situ annealing experiments, Mater. Sci. Eng. A, 403(2005), No. 1-2, p. 144. doi: 10.1016/j.msea.2005.05.010
      [51]
      J. Tang, F.L. Jiang, C.H. Luo, G.W. Bo, K.Y. Chen, J. Teng, D.F. Fu, and H. Zhang, Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al–Zn–Mg–Cu alloys, Int. J. Plast., 134(2020), art. No. 102809. doi: 10.1016/j.ijplas.2020.102809
      [52]
      Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation, Mater. Sci. Eng. A, 363(2003), No. 1-2, p. 140. doi: 10.1016/S0921-5093(03)00624-5
      [53]
      K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metall., 5(1957), No. 11, p. 628. doi: 10.1016/0001-6160(57)90109-8
      [54]
      H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon, Oxford, 1982.
      [55]
      O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, and K. Tsuzaki, Grain refinement in a commercial Al–Mg–Sc alloy under hot ECAP conditions, Mater. Sci. Eng. A, 444(2007), No. 1-2, p. 18. doi: 10.1016/j.msea.2006.06.081
      [56]
      C. Xu, Z. Horita, and T.G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater., 56(2008), No. 18, p. 5168. doi: 10.1016/j.actamat.2008.06.036
      [57]
      L.S. To´th, A. Molinari, and Y. Estrin, Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model, J. Eng. Mater. Technol., 124(2002), No. 1, p. 71. doi: 10.1115/1.1421350
      [58]
      P.W.J. McKenzie, R. Lapovok, and Y. Estrin, The influence of back pressure on ECAP processed AA 6016: Modeling and experiment, Acta Mater., 55(2007), No. 9, p. 2985. doi: 10.1016/j.actamat.2006.12.038

    Catalog


    • /

      返回文章
      返回