留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1193
  • HTML全文浏览量:  461
  • PDF下载量:  80
  • 被引次数: 0
Yue Zhao, Bei Wang, Minjie Shi, Shibo An, Liping Zhao, and Chao Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1954-1962. https://doi.org/10.1007/s12613-021-2346-7
Cite this article as:
Yue Zhao, Bei Wang, Minjie Shi, Shibo An, Liping Zhao, and Chao Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1954-1962. https://doi.org/10.1007/s12613-021-2346-7
引用本文 PDF XML SpringerLink
研究论文

镁掺杂氧化锰电极材料用于高性能水系镁离子二次电池

  • 通讯作者:

    施敏杰    E-mail: shiminjie@just.edu.cn

    晏超    E-mail: chaoyan@just.edu.cn

文章亮点

  • (1) 提出了一种新颖的氧化锰电极材料的镁掺杂工程技术。
  • (2) 理论计算与原位拉曼证实了镁掺杂对于氧化锰的重要作用。
  • (3) 镁掺杂氧化锰作为电极材料展现出高比容量和循环稳定性。
  • (4) 实现了软包装型水系镁离子二次电池的高比能与长续航特性。
  • 水系镁离子二次电池在低成本与高安全性储能设备中应用前景广阔。虽然氧化锰被认为是水系镁离子电池中一种有潜力的电极材料,但其电子导电性低和循环性能差的问题极大地阻碍了氧化锰电极材料实际应用。本文提出了一种新颖的氧化锰电极材料的镁掺杂工程技术,同时对构建的镁掺杂氧化锰电极材料的电子结构和电化学性能进行了深入研究。DFT理论计算证明了镁掺杂对调节氧化锰电子结构的重要作用,并且原位拉曼结果也证实了镁掺杂氧化锰在充放电过程中可逆的相变过程。因此,该电极材料展现出高比容量(419.8 mAh·g−1),以及优越的循环性能(1000次循环后容量几乎没有衰减)。基于这种镁掺杂氧化锰电极材料,我们成功组装了一种软包装型水系镁离子二次电池,该储能器件具有优越的电化学储能性能,实现了水系镁离子二次电池的高比能与长续航特性,揭示了其在高性能能源技术领域中的巨大应用潜能。
  • Research Article

    Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries

    + Author Affiliations
    • Rechargeable aqueous magnesium-ion batteries (MIBs) show great promise for low-cost, high-safety, and high-performance energy storage applications. Although manganese dioxide (MnO2) is considered as a potential electrode material for aqueous MIBs, the low electrical conductivity and unsatisfactory cycling performance greatly hinder the practical application of MnO2 electrode. To overcome these problems, herein, a novel Mg-intercalation engineering approach for MnO2 electrode to be used in aqueous MIBs is presented, wherein the structural regulation and electrochemical performance of the Mg-intercalation MnO2 (denoted as MMO) electrode were thoroughly investigated by density functional theory (DFT) calculations and in-situ Raman investigation. The results demonstrate that the Mg intercalation is essential to adjusting the charge/ion state and electronic band gap of MMO electrode, as well as the highly reversible phase transition of the MMO electrode during the charging–discharging process. Because of these remarkable characteristics, the MMO electrode can be capable of delivering a significant specific capacity of ~419.8 mAh·g−1, while exhibiting a good cycling capability over 1000 cycles in 1 M aqueous MgCl2 electrolyte. On the basis of such MMO electrode, we have successfully developed a soft-packaging aqueous MIB with excellent electrochemical properties, revealing its huge application potential as the efficient energy storage devices.
    • loading
    • [1]
      G.J. Liang, F.N. Mo, X.L. Ji, and C.Y. Zhi, Non-metallic charge carriers for aqueous batteries, Nat. Rev. Mater., 6(2021), No. 2, p. 109. doi: 10.1038/s41578-020-00241-4
      [2]
      M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1482. doi: 10.1007/s12613-018-1703-7
      [3]
      T. Yang, H.J. Liu, F. Bai, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 220. doi: 10.1007/s12613-019-1910-x
      [4]
      C.P. Han, J.X. Zhu, C.Y. Zhi, and H.F. Li, The rise of aqueous rechargeable batteries with organic electrode materials, J. Mater. Chem. A, 8(2020), No. 31, p. 15479. doi: 10.1039/D0TA03947K
      [5]
      J. Shin and J.W. Choi, Opportunities and reality of aqueous rechargeable batteries, Adv. Energy Mater., 10(2020), No. 28, art. No. 2001386. doi: 10.1002/aenm.202001386
      [6]
      G. Liu, Q.G. Chi, Y.Q. Zhang, Q.G. Chen, C.H. Zhang, K. Zhu, and D.X. Cao, Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries, Chem. Commun., 54(2018), No. 68, p. 9474. doi: 10.1039/C8CC05366A
      [7]
      H.Y. Zhang, K. Ye, S.X. Shao, X. Wang, K. Cheng, X. Xiao, G.L. Wang, and D.X. Cao, Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery, Electrochim. Acta, 229(2017), p. 371. doi: 10.1016/j.electacta.2017.01.110
      [8]
      Y.Q. Zhang, G. Liu, C.H. Zhang, Q.G. Chi, T.D. Zhang, Y. Feng, K. Zhu, Y. Zhang, Q.G. Chen, and D.X. Cao, Low-cost MgFexMn2−xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries, Chem. Eng. J., 392(2020), art. No. 123652. doi: 10.1016/j.cej.2019.123652
      [9]
      F. Wang, X.L. Fan, T. Gao, W. Sun, Z.H. Ma, C.Y. Yang, F.D. Han, K. Xu, and C.S. Wang, High-voltage aqueous magnesium ion batteries, ACS Cent. Sci., 3(2017), No. 10, p. 1121. doi: 10.1021/acscentsci.7b00361
      [10]
      Y.C. Tang, X.J. Li, H.M. Lv, W.L. Wang, Q. Yang, C.Y. Zhi, and H.F. Li, High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation, Angew. Chem. Int. Ed., 60(2021), No. 10, p. 5443. doi: 10.1002/anie.202013315
      [11]
      Y.L. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu, A. Facchetti, and Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries, Nat. Mater., 16(2017), No. 8, p. 841. doi: 10.1038/nmat4919
      [12]
      X. Lei, Y.P. Zheng, F. Zhang, Y. Wang, and Y.B. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material, Energy Storage Mater., 30(2020), p. 34. doi: 10.1016/j.ensm.2020.04.025
      [13]
      L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, and Y. Xia, Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode, ACS Energy Lett., 2(2017), No. 5, p. 1115. doi: 10.1021/acsenergylett.7b00040
      [14]
      J.S. Kim, W.S. Chang, R.H. Kim, D.Y. Kim, D.W. Han, K.H. Lee, S.S. Lee, and S.G. Doo, High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries, J. Power Sources, 273(2015), p. 210. doi: 10.1016/j.jpowsour.2014.07.162
      [15]
      H.T. Zhu, Y.F. An, M.J. Shi, Z.Q. Li, N.T. Chen, C. Yang, and P. Xiao, Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors, Mater. Lett., 296(2021), art. No. 129837. doi: 10.1016/j.matlet.2021.129837
      [16]
      K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg, Y. Gofer, J.S. Kim, E. Yang, C.S. Park, J.S. Kim, S.S. Lee, W.S. Chang, S.G. Doo, Y.N. Jo, Y. Jung, D. Aurbach, and J.W. Choi, The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries, Nano Lett., 15(2015), No. 6, p. 4071. doi: 10.1021/acs.nanolett.5b01109
      [17]
      H.Y. Zhang, D.X. Cao, and X. Bai, High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode, J. Power Sources, 444(2019), art. No. 227299. doi: 10.1016/j.jpowsour.2019.227299
      [18]
      Z.Z. Liu, W.H. Zhou, J. He, H. Chen, R.X. Zhang, Q. Wang, Y. Wang, Y.G. Yan, and Y.G. Chen, Binder-free MnO2 as a high rate capability cathode for aqueous magnesium ion battery, J. Alloys Compd., 869(2021), art. No. 159279. doi: 10.1016/j.jallcom.2021.159279
      [19]
      C.L. Wu, G.Y. Zhao, X.Y. Bao, X. Chen, and K.N. Sun, Hierarchically porous delta-manganese dioxide films prepared by an electrochemically assistant method for Mg ion battery cathodes with high rate performance, J. Alloys Compd., 770(2019), p. 914. doi: 10.1016/j.jallcom.2018.08.123
      [20]
      Q.H. Zhao, A.Y. Song, S.X. Ding, R.Z. Qin, Y.H. Cui, S.N. Li, and F. Pan, Preintercalation strategy in manganese oxides for electrochemical energy storage: Review and prospects, Adv. Mater., 32(2020), No. 50, art. No. 2002450. doi: 10.1002/adma.202002450
      [21]
      J.W. Wang, X.L. Sun, H.Y. Zhao, L.L. Xu, J.L. Xia, M. Luo, Y.D. Yang, and Y.P. Du, Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping, J. Phys. Chem. C, 123(2019), No. 37, p. 22735. doi: 10.1021/acs.jpcc.9b05535
      [22]
      M. Asif, M. Rashad, Z. Ali, H.L. Qiu, W. Li, L.J. Pan, and Y.L. Hou, Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries, Mater. Today Energy, 10(2018), p. 108. doi: 10.1016/j.mtener.2018.08.010
      [23]
      F. Kataoka, T. Ishida, K. Nagita, V. Kumbhar, K. Yamabuki, and M. Nakayama, Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4720. doi: 10.1021/acsaem.0c00357
      [24]
      C. Wei, X.Y. Fu, L.L. Zhang, J. Liu, P.P. Sun, L. Gao, K.J. Chang, and X.L. Yang, Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping, Chem. Eng. J., 421(2021), art. No. 127760. doi: 10.1016/j.cej.2020.127760
      [25]
      M.J. Young, A.M. Holder, S.M. George, and C.B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27(2015), No. 4, p. 1172. doi: 10.1021/cm503544e
      [26]
      Z.M. Hu, X. Xiao, C. Chen, T.Q. Li, L. Huang, C.F. Zhang, J. Su, L. Miao, J.J. Jiang, Y.R. Zhang, and J. Zhou, Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability, Nano Energy, 11(2015), p. 226. doi: 10.1016/j.nanoen.2014.10.015
      [27]
      H.Z. Zhang, Q.Y. Liu, J. Wang, K.F. Chen, D.F. Xue, J. Liu, and X.H. Lu, Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation, J. Mater. Chem. A, 7(2019), No. 38, p. 22079. doi: 10.1039/C9TA08418E
      [28]
      L. Wang, Q.Y. Wu, A. Abraham, P.J. West, L.M. Housel, G. Singh, N. Sadique, C.D. Quilty, D.R. Wu, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Silver-containing α-MnO2 nanorods: Electrochemistry in rechargeable aqueous Zn–MnO2 batteries, J. Electrochem. Soc., 166(2019), No. 15, p. A3575. doi: 10.1149/2.0101915jes
      [29]
      F.W. Fenta, B.W. Olbasa, M.C. Tsai, M.A. Weret, T.A. Zegeye, C.J. Huang, W.H. Huang, T.S. Zeleke, N.A. Sahalie, C.W. Pao, S.H. Wu, W.N. Su, H.J. Dai, and B.J. Hwang, Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life, J. Mater. Chem. A, 8(2020), No. 34, p. 17595. doi: 10.1039/D0TA04175K
      [30]
      A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, and C.M. Julien, Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2, Mater. Chem. Phys., 130(2011), No. 1-2, p. 33. doi: 10.1016/j.matchemphys.2011.04.074
      [31]
      H.F. Li, H.Y. Wang, M. Yang, Y.C. Sun, Y.R. Yin, and P.Z. Guo, Mg-inserted δ-MnO2 nanosheet assembly for enhanced energy storage, Colloids Surf. A, 602(2020), art. No. 125068. doi: 10.1016/j.colsurfa.2020.125068
      [32]
      Q. Chen, J.L. Jin, Z.K. Kou, C. Liao, Z.A. Liu, L. Zhou, J. Wang, and L.Q. Mai, Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density, Small, 16(2020), No. 14, art. No. 2000091. doi: 10.1002/smll.202000091
      [33]
      L.L. Feng, Z.W. Xuan, H.B. Zhao, Y. Bai, J.M. Guo, C.W. Su, and X.K. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery, Nanoscale Res. Lett., 9(2014), No. 1, art. No. 290. doi: 10.1186/1556-276X-9-290
      [34]
      X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries, Nat. Commun., 6(2015), art. No. 5682. doi: 10.1038/ncomms6682
      [35]
      Y. Xu, J. Wan, L. Huang, M.Y. Ou, C.Y. Fan, P. Wei, J. Peng, Y. Liu, Y.G. Qiu, X.P. Sun, C. Fang, Q. Li, J.T. Han, Y.H. Huang, J.A. Alonso, and Y.S. Zhao, Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries, Adv. Energy Mater., 9(2019), No. 4, art. No. 1803158. doi: 10.1002/aenm.201803158
      [36]
      C. Ling, J.J. Chen, and F. Mizuno, First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius, J. Phys. Chem. C, 117(2013), No. 41, p. 21158. doi: 10.1021/jp4078689
      [37]
      H.Y. Zhang, D.X. Cao, and X. Bai, Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance, Inorg. Chem. Front., 7(2020), No. 11, p. 2168. doi: 10.1039/D0QI00067A
      [38]
      J.F. Yin, A.B. Brady, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Magnesium-ion battery-relevant electrochemistry of MgMn2O4: Crystallite size effects and the notable role of electrolyte water content, Chem. Commun., 53(2017), No. 26, p. 3665. doi: 10.1039/C7CC00265C
      [39]
      Z.J. Jia, J.W. Hao, L.J. Liu, Y. Wang, and T. Qi, Vertically aligned α-MnO2 nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery, Ionics, 24(2018), No. 11, p. 3483. doi: 10.1007/s11581-018-2499-1
      [40]
      X.H. Wang, T.S. Mathis, K. Li, Z.F. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, and Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes, Nat. Energy, 4(2019), No. 3, p. 241. doi: 10.1038/s41560-019-0339-9
      [41]
      L. Naderi, S. Shahrokhian, and F. Soavi, Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO2/PEDOT: PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode, J. Mater. Chem. A, 8(2020), No. 37, p. 19588. doi: 10.1039/D0TA06561G
      [42]
      Z.X. Lu, W.X. Wang, J. Zhou, and Z.C. Bai, FeS2@TiO2 nanorods as high-performance anode for sodium ion battery, Chin. J. Chem. Eng., 28(2020), No. 10, p. 2699. doi: 10.1016/j.cjche.2020.07.011
      [43]
      S. Cheng, L.F. Yang, D.C. Chen, X. Ji, Z.J. Jiang, D. Ding, and M.L. Liu, Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy, Nano Energy, 9(2014), p. 161. doi: 10.1016/j.nanoen.2014.07.008
      [44]
      T. Gao, H. Fjellvåg, and P. Norby, A comparison study on Raman scattering properties of α- and β-MnO2, Anal. Chim. Acta, 648(2009), No. 2, p. 235. doi: 10.1016/j.aca.2009.06.059
      [45]
      M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
      [46]
      Q.N. Zhang, M.D. Levi, Q.Y. Dou, Y.L. Lu, Y.G. Chai, S.L. Lei, H.X. Ji, B. Liu, X.D. Bu, P.J. Ma, and X.B. Yan, The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802707. doi: 10.1002/aenm.201802707
      [47]
      D.C. Chen, D. Ding, X.X. Li, G.H. Waller, X.H. Xiong, M.A. El-Sayed, and M.L. Liu, Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy, Chem. Mater., 27(2015), No. 19, p. 6608. doi: 10.1021/acs.chemmater.5b03118
      [48]
      M.J. Shi, B. Wang, Y. Shen, J.T. Jiang, W.H. Zhu, Y.J. Su, M. Narayanasamy, S. Angaiah, C. Yan, and Q. Peng, 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627. doi: 10.1016/j.cej.2020.125627

    Catalog


    • /

      返回文章
      返回