留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  904
  • HTML全文浏览量:  324
  • PDF下载量:  105
  • 被引次数: 0
Changyu Ren, Caide Huang, Lifeng Zhang,  and Ying Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 345-353. https://doi.org/10.1007/s12613-021-2347-6
Cite this article as:
Changyu Ren, Caide Huang, Lifeng Zhang,  and Ying Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 345-353. https://doi.org/10.1007/s12613-021-2347-6
引用本文 PDF XML SpringerLink
研究论文

激光共聚焦显微镜原位观察Al2O3 夹杂物在CaO–Al2O3–SiO2渣中的溶解动力学

  • 通讯作者:

    张立峰    E-mail: zhanglifeng@ncut.edu.cn

    任英    E-mail: yingren@ustb.edu.cn

文章亮点

  • (1) 通过高温激光共聚焦显微镜原位观察了Al2O3夹杂物在CaO–Al2O3–SiO2渣中溶解行为。
  • (2) 应用修正扩散方程预测了精炼渣粘度对Al2O3夹杂物溶解速率的定量影响。
  • (3) 建立了夹杂物溶解预测模型,温度、渣中CaO/Al2O3比和颗粒尺寸的影响。
  • 采用高温共聚焦激光扫描显微镜研究了1773至1873 K时在CaO–Al2O3–SiO2渣中Al2O3夹杂物的溶解动力学。 结果表明,Al2O3溶解的控制步骤是其在渣中的扩散。随着渣中CaO/Al2O3比例的增加,Al2O3夹杂物的溶解曲线与传统边界层扩散模型难以吻合。 建立了考虑精炼渣粘度的修正扩散方程,研究了Al2O3在渣中的溶解机理。在1773 K至1873 K温度下,Al2O3在渣中的扩散系数为2.8 × 10−10至4.1 × 10−10 m2/s。随着温度的升高、CaO/Al2O3的增加、粒径的增大,Al2O3的溶出速率增大。提出了一个新的模型为$ {v}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}}=0.16\times {R}_{0}^{1.58}\times x\times {\left(T-{T}_{\mathrm{m}\mathrm{p}}\right)}^{1.11} $,预测不同粒径的Al2O3夹杂物的溶解速率和总溶解时间。$ {v}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}} $为Al2O3的体积溶解速率,μm3/s; R0 为夹杂物颗粒的初始粒径;x为CaO/Al2O3质量比值; T为温度,K;Tmp为精炼渣的熔点,K。
  • Research Article

    In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy

    + Author Affiliations
    • The dissolution kinetics of Al2O3 in CaO–Al2O3–SiO2 slags was studied using a high-temperature confocal scanning laser microscope at 1773 to 1873 K. The results show that the controlling step during the Al2O3 dissolution was the diffusion in molten slag. It was found that the dissolution curves of Al2O3 particles were hardly agreed with the traditional boundary layer diffusion model with the increase of the CaO/Al2O3 ratio of slag. A modified diffusion equation considering slag viscosity was developed to study the dissolution mechanism of Al2O3 in slag. Diffusion coefficients of Al2O3 in slag were calculated as 2.8 × 10−10 to 4.1 × 10−10 m2/s at the temperature of 1773–1873 K. The dissolution rate of Al2O3 increased with higher temperature, CaO/Al2O3, and particle size. A new model was shown to be ${v}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}}=0.16\times {r}_{0}^{1.58}\times $$ {x}^{3.52}\times {\left(T-{T}_{\mathrm{m}\mathrm{p}}\right)}^{1.11} $ to predict the dissolution rate and the total dissolution time of Al2O3 inclusions with various sizes, where $ {v}_{{\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3}} $ is the dissolution rate of Al2O3 in volume, μm3/s; x is the value of CaO/Al2O3 mass ratio; R0 is the initial radius of Al2O3, μm; T is the temperature, K; Tmp is the melting point of slag, K.
    • loading
    • [1]
      L.F. Zhang and B.G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ Int., 43(2003), No. 3, p. 271. doi: 10.2355/isijinternational.43.271
      [2]
      L.F. Zhang. Non-metallic Inclusions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2019.
      [3]
      L.F. Zhang. Non-metallic Inclusions in Steels: Fundamentals, Metallurgical Industry Press, Beijing, 2019.
      [4]
      C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826. doi: 10.1007/s12613-020-2223-9
      [5]
      W. Xiao, Y.P. Bao, C. Gu, M. Wang, Y. Liu, Y.S. Huang, and G.T. Sun, Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804. doi: 10.1007/s12613-021-2253-y
      [6]
      L.F. Zhang and B.G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metall. Mater. Trans. B, 37(2006), No. 5, p. 733. doi: 10.1007/s11663-006-0057-0
      [7]
      A.L.V. da Costa e Silva, Non-metallic inclusions in steels – origin and control, J. Mater. Res. Technol., 7(2018), No. 3, p. 283. doi: 10.1016/j.jmrt.2018.04.003
      [8]
      J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
      [9]
      M. Jiang, J.C. Liu, K.L. Li, R.G. Wang, and X.H. Wang, Formation mechanism of large CaO–SiO2–Al2O3 inclusions in Si-deoxidized spring steel refined by low basicity slag, Metall. Mater. Trans. B, 52(2021), No. 4, p. 1950. doi: 10.1007/s11663-021-02230-6
      [10]
      Y. Liu, X. Zhang, P. Wang, and D.Z. Li, Investigation on inclusions in non-oriented silicon steels, Metall. Mater. Trans. B, 51(2020), No. 1, p. 22. doi: 10.1007/s11663-019-01735-5
      [11]
      L.F. Zhang, S. Taniguchi, and K.K. Cai, Fluid flow and inclusion removal in continuous casting tundish, Metall. Mater. Trans. B, 31(2000), No. 2, p. 253. doi: 10.1007/s11663-000-0044-9
      [12]
      F. Yuan, A.J. Xu, and M.Q. Gu, Development of an improved CBR model for predicting steel temperature in ladle furnace refining, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1321. doi: 10.1007/s12613-020-2234-6
      [13]
      H.X. Yu, D.X. Yang, J.M. Zhang, G.Y. Qiu, and N. Zhang, Effect of Al content on the reaction between Fe−10Mn−xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO−SiO2−Al2O3−MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 256. doi: 10.1007/s12613-021-2298-y
      [14]
      L.X. Zhang, M. Chen, M.Y. Huang, N. Wang, and C. Wang, Dissolution kinetics of SiO2 in FeO–SiO2–V2O3–CaO–MnO–Cr2O3–TiO2 system with different FeO contents, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2703. doi: 10.1007/s11663-021-02214-6
      [15]
      G.J. Chen, S.P. He, and Q. Wang, Dissolution behavior of Al2O3 into tundish slag for high-Al steel, J. Mater. Res. Technol., 9(2020), No. 5, p. 11311. doi: 10.1016/j.jmrt.2020.07.107
      [16]
      Z.R. Li, B.R. Jia, Y.B. Zhang, S.P. He, Q.Q. Wang, and Q. Wang, Dissolution behaviour of Al2O3 in mould fluxes with low SiO2 content, Ceram. Int., 45(2019), No. 3, p. 4035. doi: 10.1016/j.ceramint.2018.11.082
      [17]
      G. Tripathi, A. Malfliet, B. Blanpain, and M.X. Guo, Dissolution behavior and phase evolution during aluminum oxide dissolution in BOF slag, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1782. doi: 10.1007/s11663-019-01590-4
      [18]
      Y.J. Park, Y.M. Cho, W.Y. Cha, and Y.B. Kang, Dissolution kinetics of alumina in molten CaO–Al2O3–FetO–MgO–SiO2 oxide representing the RH slag in steelmaking process, J. Am. Ceram. Soc., 103(2020), No. 3, p. 2210. doi: 10.1111/jace.16879
      [19]
      S. Sridhar and A.W. Cramb, Kinetics of Al2O3 dissolution in CaO–MgO–SiO2–Al2O3 slags: In situ observations and analysis, Metall. Mater. Trans. B, 31(2000), No. 2, p. 406. doi: 10.1007/s11663-000-0059-2
      [20]
      J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants, In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags, J. Eur. Ceram. Soc., 27(2007), No. 4, p. 1961. doi: 10.1016/j.jeurceramsoc.2006.05.107
      [21]
      J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang, In situ observation of the dissolution phenomena of SiC particle in CaO–SiO2–MnO slag, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3181. doi: 10.1016/j.jeurceramsoc.2010.07.020
      [22]
      S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard, In situ observation of the dissolution of SiO2 particles in CaO–Al2O3–SiO2 slags and mathematical analysis of its dissolution pattern, J. Am. Ceram. Soc., 97(2014), No. 1, p. 316. doi: 10.1111/jace.12665
      [23]
      Y. Lee, J.K. Yang, D.J. Min, and J.H. Park, Mechanism of MgO dissolution in MgF2–CaF2–MF (M = Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM), Ceram. Int., 45(2019), No. 16, p. 20251. doi: 10.1016/j.ceramint.2019.06.298
      [24]
      M. Sharma and N. Dogan, Dissolution behavior of aluminum titanate inclusions in steelmaking slags, Metall. Mater. Trans. B, 51(2020), No. 2, p. 570. doi: 10.1007/s11663-019-01762-2
      [25]
      K.Y. Miao, A. Haas, M. Sharma, W.Z. Mu, and N. Dogan, In situ observation of calcium aluminate inclusions dissolution into steelmaking slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1612. doi: 10.1007/s11663-018-1303-y
      [26]
      T.L. Tian, Y.Z. Zhang, H.H. Zhang, K.X. Zhang, J. Li, and H. Wang, Dissolution behavior of SiO2 in the molten blast furnace slags, Int. J. Appl. Ceram. Technol., 16(2019), No. 3, p. 1078. doi: 10.1111/ijac.13120
      [27]
      C.Y. Ren, L.F. Zhang, J. Zhang, S.J. Wu, P. Zhu, and Y. Ren, In situ observation of the dissolution of Al2O3 particles in CaO–Al2O3–SiO2 slags, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3288. doi: 10.1007/s11663-021-02256-w
      [28]
      Y. Kim, Y. Kashiwaya, and Y. Chung, Effect of varying Al2O3 contents of CaO–Al2O3–SiO2 slags on lumped MgO dissolution, Ceram. Int., 46(2020), No. 5, p. 6205. doi: 10.1016/j.ceramint.2019.11.088
      [29]
      W.Z. Mu and C.J. Xuan, Phase-field study of dissolution behaviors of different oxide particles into oxide melts, Ceram. Int., 46(2020), No. 10, p. 14949. doi: 10.1016/j.ceramint.2020.03.023
      [30]
      C.J. Xuan and W.Z. Mu, A phase-field model for the study of isothermal dissolution behavior of alumina particles into molten silicates, J. Am. Ceram. Soc., 102(2019), No. 11, p. 6480. doi: 10.1111/jace.16509
      [31]
      J.J. Liu, J. Zou, M.X. Guo, and N. Moelans, Phase field simulation study of the dissolution behavior of Al2O3 into CaO–Al2O3–SiO2 slags, Comput. Mater. Sci., 119(2016), p. 9. doi: 10.1016/j.commatsci.2016.03.034
      [32]
      J. Heulens, B. Blanpain, and N. Moelans, A phase field model for isothermal crystallization of oxide melts, Acta Mater., 59(2011), No. 5, p. 2156. doi: 10.1016/j.actamat.2010.12.016
      [33]
      Z.J. Wang and I. Sohn, A review of in situ observations of crystallization and growth in high temperature oxide melts, JOM, 70(2018), No. 7, p. 1210. doi: 10.1007/s11837-018-2887-z
      [34]
      I. Sohn and R. Dippenaar, In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2083. doi: 10.1007/s11663-016-0675-0
      [35]
      D.C. Fu, G.H. Wen, X.Q. Zhu, J.L. Guo, and P. Tang, Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation, J. Iron Steel Res. Int., 28(2021), No. 9, p. 1133. doi: 10.1007/s42243-020-00513-x
      [36]
      Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li, In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3137. doi: 10.1007/s11663-018-1411-8
      [37]
      Y.G. Wang and C.J. Liu, Agglomeration characteristics of various oxide inclusions in molten steel containing rare earth element under different deoxidation conditions, ISIJ Int., 61(2021), No. 5, p. 1396. doi: 10.2355/isijinternational.ISIJINT-2020-684
      [38]
      W.Z. Mu and C.J. Xuan, Agglomeration mechanism of complex Ti–Al oxides in liquid ferrous alloys considering high-temperature interfacial phenomenon, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2694. doi: 10.1007/s11663-019-01686-x
      [39]
      X.J. Zhao, Z.N. Yang, and F.C. Zhang, In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 620. doi: 10.1007/s12613-019-1911-9
      [40]
      J. Guo, X.R. Chen, S.W. Han, Y. Yan, and H.J. Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr−8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 328. doi: 10.1007/s12613-019-1945-z
      [41]
      A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar, Dissolution of ZrO2, Al2O3, MgO and MgAl2O4 particles in a B2O3 containing commercial fluoride-free mould slag, ISIJ Int., 44(2004), No. 5, p. 836. doi: 10.2355/isijinternational.44.836
      [42]
      J.H. Park and L.F. Zhang, Kinetic modeling of nonmetallic inclusions behavior in molten steel: A review, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2453. doi: 10.1007/s11663-020-01954-1
      [43]
      S. Lyu, X.D. Ma, Z.Z. Huang, Z. Yao, H.G. Lee, Z.H. Jiang, G. Wang, J. Zou, and B.J. Zhao, Formation mechanism of Al2O3-containing inclusions in Al-deoxidized spring steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2205. doi: 10.1007/s11663-019-01644-7
      [44]
      O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, Inc., the United States of America, 1999.
      [45]
      M.J. Whelan, On the kinetics of precipitate dissolution, Met. Sci. J., 3(1969), No. 1, p. 95. doi: 10.1179/msc.1969.3.1.95
      [46]
      H.B. Aaron, D. Fainstein, and G.R. Kotler, Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., 41(1970), No. 11, p. 4404. doi: 10.1063/1.1658474
      [47]
      L.C. Brown, Diffusion-controlled dissolution of planar, cylindrical, and spherical precipitates, J. Appl. Phys., 47(1976), No. 2, p. 449. doi: 10.1063/1.322669
      [48]
      F. Verhaeghe, S. Arnout, B. Blanpain, and P. Wollants, Lattice-Boltzmann modeling of dissolution phenomena, Phys. Rev. E, 73(2006), No. 3, art. No. 036316. doi: 10.1103/PhysRevE.73.036316
      [49]
      C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
      [50]
      K.C. Mills and B.J. Keene, Physical properties of BOS slags, Int. Mater. Rev., 32(1987), No. 1, p. 1. doi: 10.1179/095066087790150296
      [51]
      J. Ahrendts and S. Kabelac. Technische thermodynamik, [in] H. Czichos and M. Hennecke, eds., Hütte - Das Ingenieurwissen, Springer Berlin, Heidelberg, 2012, p. 925.
      [52]
      B.J. Monaghan and L. Chen, Dissolution behavior of alumina micro-particles in CaO–SiO2–Al2O3 liquid oxide, J. Non Cryst. Solids, 347(2004), No. 1-3, p. 254. doi: 10.1016/j.jnoncrysol.2004.09.011
      [53]
      M. Valdez, G.S. Shannon, and S. Sridhar, The ability of slags to absorb solid oxide inclusions, ISIJ Int., 46(2006), No. 3, p. 450. doi: 10.2355/isijinternational.46.450

    Catalog


    • /

      返回文章
      返回