Cite this article as: |
Shengyang Zhang, Bolin Zhang, Boyu Wu, Bo Liu, and Shengen Zhang, Effect of samarium on the N2 selectivity of SmxMn0.3−xTi catalysts during selective catalytic reduction of NOx with NH3, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 642-652. https://doi.org/10.1007/s12613-021-2348-5 |
张柏林 E-mail: zhangbolin@ustb.edu.cn
张深根 E-mail: zhangshengen@mater.ustb.edu.cn
Supplementary Information-s12613-021-2348-5.docx |
[1] |
L. Tang, X.D. Xue, J.B. Qu, Z.F. Mi, X. Bo, X.Y. Chang, S.Y. Wang, S.B. Li, W.G. Cui, and G.X. Dong, Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network, Sci. Data, 7(2020), art. No. 325. doi: 10.1038/s41597-020-00665-1
|
[2] |
X.M. Wang, X.S. Du, G.P. Yang, J.Y. Xue, Y.R. Chen, and L. Zhang, Chemisorption of NO2 on V-based SCR catalysts: a fundamental study toward the mechanism of “fast-SCR” reaction, J. Phys. Chem. C, 123(2019), No. 33, p. 20451. doi: 10.1021/acs.jpcc.9b06910
|
[3] |
X.M. Wang, X.S. Du, L. Zhang, Y.R. Chen, G.P. Yang, and J.Y. Ran, Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5–WO3/TiO2 catalyst for NO reduction, Appl. Catal. A, 559(2018), p. 112. doi: 10.1016/j.apcata.2018.04.025
|
[4] |
Y.S. Li, X.S. Leng, S.B. Ma, T.R. Zhang, F.L. Yuan, X.Y. Niu, and Y.J. Zhu, Effects of Mo addition on the NH3-SCR of NO reaction over MoaMnTi10Ox (a = 0.2, 0.4, 0.6 and 0.8): Synergistic action between redox and acidity, Catal. Today, 339(2020), p. 254. doi: 10.1016/j.cattod.2019.03.048
|
[5] |
M.J. Han, Y.L. Jiao, C.H. Zhou, Y.L. Guo, Y. Guo, G.Z. Lu, L. Wang, and W.C. Zhan, Catalytic activity of Cu‒SSZ‒13 prepared with different methods for NH3-SCR reaction, Rare Met., 38(2019), No. 3, p. 210. doi: 10.1007/s12598-018-1143-6
|
[6] |
B.L. Zhang, S.G. Zhang, and B. Liu, Comparative study on transition element doped Mn‒Zr‒Ti oxides catalysts for the low-temperature selective catalytic reduction of NO with NH3, React. Kinet. Mech. Catal., 127(2019), No. 2, p. 637. doi: 10.1007/s11144-019-01586-w
|
[7] |
W.J. Li, T.Y. Li, and M.Y. Wey, Preferred enhancement of fast-SCR by Mn/CeSiOx catalyst: study on Ce/Si promotion and shape dependence, Chem. Eng. J., 403(2021), art. No. 126317. doi: 10.1016/j.cej.2020.126317
|
[8] |
L. Chen, S. Ren, L. Liu, B.X. Su, J. Yang, Z.C. Chen, M.M. Wang, and Q.C. Liu, Catalytic performance over Mn‒Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports, J. Environ. Chem. Eng., 10(2022), No. 2, p. 107167. doi: 10.1016/j.jece.2022.107167
|
[9] |
F.M. Wang, B.X. Shen, S.W. Zhu, and Z. Wang, Promotion of Fe and Co doped Mn‒Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance, Fuel, 249(2019), p. 54. doi: 10.1016/j.fuel.2019.02.113
|
[10] |
G. Yang, H.T. Zhao, X. Luo, K.Q. Shi, H.B. Zhao, W.K. Wang, Q.H. Chen, H. Fan, and T. Wu, Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ‒Al2O3 catalysts, Appl. Catal. B, 245(2019), p. 743. doi: 10.1016/j.apcatb.2018.12.080
|
[11] |
Y.P. Zhang, T.J. Huang, R. Xiao, H.T. Xu, K. Shen, and C.C. Zhou, A comparative study on the Mn/TiO2‒M(M = Sn, Zr or Al)Ox catalysts for NH3-SCR reaction at low temperature, Environ. Technol., 39(2018), No. 10, p. 1284. doi: 10.1080/21622515.2017.1329345
|
[12] |
D.A. Peña, B.S. Uphade, and P.G. Smirniotis, TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals, J. Catal., 221(2004), No. 2, p. 421. doi: 10.1016/j.jcat.2003.09.003
|
[13] |
B.L. Zhang, M. Liebau, W. Suprun, B. Liu, S.G. Zhang, and R. Gläser, Suppression of N2O formation by H2O and SO2 in the selective catalytic reduction of NO with NH3 over a Mn/Ti–Si catalyst, Catal. Sci. Technol., 9(2019), No. 17, p. 4759. doi: 10.1039/C9CY01156K
|
[14] |
B.L. Zhang, L.F. Deng, B. Liu, C.Y. Luo, M. Liebau, S.G. Zhang, and R. Gläser, Synergistic effect of cobalt and niobium in Co3–Nb–Ox on performance of selective catalytic reduction of NO with NH3, Rare Met., 41(2022), No. 1, p. 166. doi: 10.1007/s12598-021-01790-5
|
[15] |
S.J. Yang, F.H. Qi, S.C. Xiong, H. Dang, Y. Liao, P.K. Wong, and J.H. Li, MnOx supported on Fe‒Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity, Appl. Catal. B, 181(2016), p. 570. doi: 10.1016/j.apcatb.2015.08.023
|
[16] |
L. Qiu, J.J. Meng, D.D. Pang, C.L. Zhang, and F. Ouyang, Reaction and characterization of Co and Ce doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3, Catal. Lett., 145(2015), No. 7, p. 1500. doi: 10.1007/s10562-015-1556-x
|
[17] |
X.J. Yao, L. Chen, J. Cao, Y. Chen, M. Tian, F.M. Yang, J.F. Sun, C.J. Tang, and L. Dong, Enhancing the deNOx performance of MnOx/CeO2–ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification, Chem. Eng. J., 369(2019), p. 46. doi: 10.1016/j.cej.2019.03.052
|
[18] |
M. Casanova, K. Schermanz, J. Llorca, and A. Trovarelli, Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2‒WO3‒SiO2, Catal. Today, 184(2012), No. 1, p. 227. doi: 10.1016/j.cattod.2011.10.035
|
[19] |
D.M. Meng, W.C. Zhan, Y. Guo, Y.L. Guo, L. Wang, and G.Z. Lu, A highly effective catalyst of Sm–MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance, ACS Catal., 5(2015), No. 10, p. 5973. doi: 10.1021/acscatal.5b00747
|
[20] |
Q.L. Chen, R.T. Guo, Q.S. Wang, W.G. Pan, W.H. Wang, N.Z. Yang, C.Z. Lu, and S.X. Wang, The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3, Fuel, 181(2016), p. 852. doi: 10.1016/j.fuel.2016.05.045
|
[21] |
X.Z. Shao, H.Y. Wang, M.L. Yuan, J. Yang, W.C. Zhan, L. Wang, Y. Guo, and G.Z. Lu, Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3, Rare Met., 38(2019), No. 4, p. 292. doi: 10.1007/s12598-018-1176-x
|
[22] |
D.H. Wang, Q. Yao, C.H. Mou, S.E. Hui, and Y.Q. Niu, New insight into N2O formation from NH3 oxidation over MnOx/TiO2 catalyst, Fuel, 254(2019), art. No. 115719. doi: 10.1016/j.fuel.2019.115719
|
[23] |
S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan, and J. Li, Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel, Environ. Sci. Technol., 48(2014), No. 17, p. 10354. doi: 10.1021/es502585s
|
[24] |
H.Y. Chen, Z.H. Wei, M. Kollar, F. Gao, Y.L. Wang, J. Szanyi, and C.H.F. Peden, A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts, J. Catal., 329(2015), p. 490. doi: 10.1016/j.jcat.2015.06.016
|
[25] |
P. Lalinda, U.S. Kulathunga, I.J. Lakruwani, D.J. Champa, and M.J. Pradeep, A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 846. doi: 10.1007/s12613-020-2030-3
|
[26] |
Z. Amirsardari, A. Dourani, M.A. Amirifar, and N.G. Massoom, Comparative characterization of iridium loading on catalyst assessment under different conditions, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1233. doi: 10.1007/s12613-020-2058-4
|
[27] |
H. Du, Z.T. Han, Q.M. Wang, Y. Gao, C. Gao, J.M. Dong, and X.X. Pan, Effects of ferric and manganese precursors on catalytic activity of Fe–Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature, Environ. Sci. Pollut. Res., 27(2020), No. 32, p. 40870. doi: 10.1007/s11356-020-10073-y
|
[28] |
P. Sun, R.T. Guo, S.M. Liu, S.X. Wang, W.G. Pan, M.Y. Li, S.W. Liu, J. Liu, and X. Sun, Enhancement of the low-temperature activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3, Mol. Catal., 433(2017), p. 224. doi: 10.1016/j.mcat.2016.12.025
|
[29] |
D.M. Meng, W.C. Zhan, Y. Guo, Y.L. Guo, Y.S. Wang, L. Wang, and G.Z. Lu, A highly effective catalyst of Sm‒Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature, J. Mol. Catal. A: Chem., 420(2016), p. 272. doi: 10.1016/j.molcata.2016.04.028
|
[30] |
Q.C. Yu, Y. Deng, F. Wang, Y.B. Feng, X.M. Chen, B. Yang, and D.C. Liu, Preparation of activated ceria and its desulfurization performance, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 992. doi: 10.1007/s12613-015-1160-5
|
[31] |
S.B. Ma, X.Y. Zhao, Y.S. Li, T.R. Zhang, F.L. Yuan, X.Y. Niu, and Y.J. Zhu, Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO, Appl. Catal. B, 248(2019), p. 226. doi: 10.1016/j.apcatb.2019.02.015
|
[32] |
B.L. Zhang, M. Liebau, B. Liu, L. Li, S.G. Zhang, and R. Gläser, Selective catalytic reduction of NOx with NH3 over Mn–Zr–Ti mixed oxide catalysts, J. Mater. Sci., 54(2019), No. 9, p. 6943. doi: 10.1007/s10853-019-03369-z
|
[33] |
H. Liu, Z.X. Fan, C.Z. Sun, S.H. Yu, S. Feng, W. Chen, D.Z. Chen, C.J. Tang, F. Gao, and L. Dong, Improved activity and significant SO2 tolerance of samarium modified CeO2–TiO2 catalyst for NO selective catalytic reduction with NH3, Appl. Catal. B, 244(2019), p. 671. doi: 10.1016/j.apcatb.2018.12.001
|
[34] |
J. Fan, P. Ning, Z.X. Song, X. Liu, L.Y. Wang, J. Wang, H.M. Wang, K.X. Long, and Q.L. Zhang, Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2–ZrO2–SO42− catalyst: in situ DRIFTs investigation, Chem. Eng. J., 334(2018), p. 855. doi: 10.1016/j.cej.2017.10.011
|
[35] |
L.L. Li, L. Zhang, K.L. Ma, W.X. Zou, Y. Cao, Y. Xiong, C.J. Tang, and L. Dong, Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3, Appl. Catal. B, 207(2017), p. 366. doi: 10.1016/j.apcatb.2017.02.041
|
[36] |
S. Ali, L.Q. Chen, Z.B. Li, T.R. Zhang, R. Li, S. Bakhtiar, X.S. Leng, F.L. Yuan, X.Y. Niu, and Y.J. Zhu, Cux‒Nb1.1−x (x = 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3, Appl. Catal. B, 236(2018), p. 25. doi: 10.1016/j.apcatb.2018.05.014
|
[37] |
Y.J. Kim, H.J. Kwon, I.S. Nam, J.W. Choung, J.K. Kil, H.J. Kim, M.S. Cha, and G.K. Yeo, High deNOx performance of Mn/TiO2 catalyst by NH3, Catal. Today, 151(2010), No. 3, p. 244.
|
[38] |
M. Salazar, S. Hoffmann, L. Tillmann, V. Singer, R. Becker, and W. Grünert, Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3: Precipitates and physical mixtures, Appl. Catal. B, 218(2017), p. 793. doi: 10.1016/j.apcatb.2017.06.079
|
[39] |
S.J. Yang, C.Z. Wang, J.H. Li, N.Q. Yan, L. Ma, and H.Z. Chang, Low temperature selective catalytic reduction of NO with NH3 over Mn‒Fe spinel: performance, mechanism and kinetic study, Appl. Catal. B, 110(2011), p. 71. doi: 10.1016/j.apcatb.2011.08.027
|