留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(12)

数据统计

分享

计量
  • 文章访问数:  2824
  • HTML全文浏览量:  1581
  • PDF下载量:  182
  • 被引次数: 0
Xiu Song, Lei Wang,  and Yang Liu, A review of the strengthening–toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 185-199. https://doi.org/10.1007/s12613-021-2350-y
Cite this article as:
Xiu Song, Lei Wang,  and Yang Liu, A review of the strengthening–toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 185-199. https://doi.org/10.1007/s12613-021-2350-y
引用本文 PDF XML SpringerLink
特约综述

多场耦合作用下高性能结构材料的强韧化行为及机理研究进展

  • 通讯作者:

    王磊    E-mail: wanglei@mail.neu.edu.cn

文章亮点

  • (1) 系统分析了几种典型的高性能金属结构材料在多物理场耦合作用下的强韧化行为。
  • (2) 总结了电场/电流场–温度–应力多场耦合作用下,不同类型的结构材料的强韧化机理。
  • (3) 提出了多物理耦合场在结构材料中的研究方向,展望了外场技术在结构材料的应用前景。
  • 利用高能外场控制金属结构材料的微观组织、进而改善材料的综合性能,是目前材料科学研究者广泛关注的热点之一。本文系统分析了几种典型的金属结构材料在电场/电流场–温度–应力等多物理场耦合作用下的强化及韧化行为。通过多场的耦合可以促进位错运动、增加空位浓度、导致相粗化和动态再结晶等,进而可以提高GH4169镍基高温合金、AZ31镁合金和纯钛的塑性。值得一提的是,除了传统的电致塑性效应外,近年来诸多研究表明,高能外场作用下通过控制原子扩散或相变行为,同样可以起到强化合金的效果。例如,适当的电脉冲电流密度可以促进GH4169镍基高温合金中纳米级γ′′相的形成及γ′′相粗化,因而同时提高了合金的强度和塑性;变形纯钛在多场耦合作用下,通过调控位错、孪晶等微观缺陷可以在不降低塑性的条件下提高其强度。本文归纳总结了多场耦合作用下不同类型金属结构材料的强韧化机理,揭示了多场耦合对结构材料的作用机理与合金的组织和缺陷演化有关,包括空位、退火孪晶、位错等,从而进一步影响了相的析出、粗化以及再结晶等行为,从而对材料的强化和韧化产生显著影响。本文不仅揭示了多场耦合对金属结构材料的作用机制,同时旨在为改善金属结构材料的强韧性提供一种可行的方法。最后,在现有工作的基础上,展望了多物理耦合场在结构材料中的应用前景。

  • Invited Review

    A review of the strengthening–toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment

    + Author Affiliations
    • The application of an external field is a promising method to control the microstructure of materials, leading to their improved performance. In the present paper, the strengthening and toughening behavior of some typical high-performance structural materials subjected to multifield coupling treatment, including electrostatic field, electro-pulse current, thermal field, and stress field, are reviewed in detail. In addition to the general observation that the plasticity of materials could be increased by multi-external fields, strength enhancement can be achieved by controlling atomic diffusion or phase transformations. The paper is not limited to the strengthening and toughening mechanisms of the multifield coupling effects on different types of structural materials but is intended to provide a generic method to improve both the strength and ductility of the materials. Finally, the prospects of the applications of multi-external fields have also been proposed based on current works.

    • loading
    • [1]
      P.J. Noell, J.M. Rodelas, Z.N. Ghanbari, and C.M. Laursen, Microstructural modification of additively manufactured metals by electropulsing, Addit. Manuf., 33(2020), art. No. 101128. doi: 10.1016/j.addma.2020.101128
      [2]
      L. Zhang, X. Guo, J.W. Gao, A.Y. Deng, and E.G. Wang, Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel, Acta Metall. Sin., 56(2020), No. 9, p. 1239.
      [3]
      Y.C. Liu, F. Sommer, and E.J. Mittemeijer, Austenite-ferrite transformation kinetics under uniaxial compressive stress in Fe–2.96 at.% Ni alloy, Acta Mater., 57(2009), No. 9, p. 2858. doi: 10.1016/j.actamat.2009.02.044
      [4]
      X. Zhang, H.W. Li, M. Zhan, Z.B. Zheng, J. Gao, and G.D. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in situ transmission electron microscopy observations, J. Mater. Sci. Technol., 36(2020), p. 79. doi: 10.1016/j.jmst.2019.08.008
      [5]
      Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553. doi: 10.1007/s12613-020-2177-y
      [6]
      D. Wu, W.L. Wang, L.G. Zhang, Z.Y. Wang, K.C. Zhou, and L.B. Liu, Erratum to: New high-strength Ti–Al–V–Mo alloy: From high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 129. doi: 10.1007/s12613-019-1940-4
      [7]
      Y.F. Wu, X.L. Zhang, X.F. Xu, X.W. Lin, and L. Liu, A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials, J. Energy Storage, 31(2020), art. No. 101567. doi: 10.1016/j.est.2020.101567
      [8]
      Y.Q. Li, B. Li, D. Zhang, and L.F. Xie, External electric field induced structural transformation and decreased sensitivity of CL-20/EPDM composites, Chem. Phys. Lett., 757(2020), art. No. 137875. doi: 10.1016/j.cplett.2020.137875
      [9]
      J.Q. Hao, S.Y. Qin, L.G. Yan, and X.F. Zhang, Breaking thermodynamic and kinetic barriers in superalloy homogenization process by electropulsing to improve mechanical properties, J. Alloys Compd., 873(2021), art. No. 159854. doi: 10.1016/j.jallcom.2021.159854
      [10]
      F. Maccari, D.Y. Karpenkov, E. Semenova, A.Y. Karpenkov, I.A. Radulov, K.P. Skokov, and O. Gutfleisch, Accelerated crystallization and phase formation in Fe40Ni40B20 by electric current assisted annealing technique, J. Alloys Compd., 836(2020), art. No. 155338. doi: 10.1016/j.jallcom.2020.155338
      [11]
      D. Waryoba, Z. Islam, B.M. Wang, and A. Haque, Recrystallization mechanisms of Zircaloy-4 alloy annealed by electric current, J. Alloys Compd., 820(2020), art. No. 153409. doi: 10.1016/j.jallcom.2019.153409
      [12]
      X.G. Zheng, Y.N. Shi, and K. Lu, Electro-healing cracks in nickel, Mater. Sci. Eng. A, 561(2013), p. 52. doi: 10.1016/j.msea.2012.10.080
      [13]
      Y.G. Zhao, B.D. Ma, H.C. Guo, J. Ma, Q. Yang, and J.S. Song, Electropulsing strengthened 2GPa boron steel with good ductility, Mater. Des., 43(2013), p. 195. doi: 10.1016/j.matdes.2012.06.060
      [14]
      H.X. Zhang and X.F. Zhang, Softening behavior of Al–Zn–Mg alloys with different strengthening mechanisms in a coupled field, Mater. Sci. Eng. A, 771(2020), art. No. 138582. doi: 10.1016/j.msea.2019.138582
      [15]
      R.F. Zhu, J.N. Liu, G.Y. Tang, S.Q. Shi, and M.W. Fu, Properties, microstructure and texture evolution of cold rolled Cu strips under electropulsing treatment, J. Alloys Compd., 544(2012), p. 203. doi: 10.1016/j.jallcom.2012.07.150
      [16]
      Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang, Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy, Mater. Sci. Eng. A, 501(2009), No. 1-2, p. 125. doi: 10.1016/j.msea.2008.09.080
      [17]
      D.D. Ben, H.J. Yang, Y.R. Ma, X.H. Shao, J.C. Pang, and Z.F. Zhang, Rapid hardening of AISI 4340 steel induced by electropulsing treatment, Mater. Sci. Eng. A, 725(2018), p. 28. doi: 10.1016/j.msea.2018.04.013
      [18]
      B. Kinsey, G. Cullen, A. Jordan, and S. Mates, Investigation of electroplastic effect at high deformation rates for 304SS and Ti–6Al–4V, CIRP Ann., 62(2013), No. 1, p. 279. doi: 10.1016/j.cirp.2013.03.058
      [19]
      P.S. McNeff and B.K. Paul, Electroplasticity effects in Haynes 230, J. Alloys Compd., 829(2020), art. No. 154438. doi: 10.1016/j.jallcom.2020.154438
      [20]
      Y.V. Baranov, Effect of electrostatic fields on mechanical characteristics and structure of metals and alloys, Mater. Sci. Eng. A, 287(2000), No. 2, p. 288. doi: 10.1016/S0921-5093(00)00787-5
      [21]
      V.S. Savenko, Hardening of a bismuth crystal due to electroplastic deformation, Met. Sci. Heat Treat., 49(2007), No. 3-4, p. 147. doi: 10.1007/s11041-007-0027-4
      [22]
      J.Y. Li, P. Ni, L. Wang, and Y. Tan, Influence of direct electric current on solidification process of Al–Si alloy, Mater. Sci. Semicond. Process., 61(2017), p. 79. doi: 10.1016/j.mssp.2016.12.034
      [23]
      M.J. Li, T. Tamura, N. Omura, and K.J. Miwa, Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique, J. Alloys Compd., 487(2009), No. 1-2, p. 187. doi: 10.1016/j.jallcom.2009.08.045
      [24]
      R.Z. Wang, J.G. Qi, B. Wang, W. Zhang, and J.Z. Wang, Solidification behavior and crystal growth mechanism of aluminum under electric pulse, J. Mater. Process. Technol., 237(2016), p. 235. doi: 10.1016/j.jmatprotec.2016.06.016
      [25]
      H. Conrad, Effects of electric current on solid state phase transformations in metals, Mater. Sci. Eng. A, 287(2000), No. 2, p. 227. doi: 10.1016/S0921-5093(00)00780-2
      [26]
      Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123. doi: 10.1007/s12613-019-1949-8
      [27]
      B. Diepold, N. Vorlaufer, S. Neumeier, T. Gartner, and M. Göken, Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 640. doi: 10.1007/s12613-020-1991-6
      [28]
      L. Wang, Y. Liu, T. Cui, and X. Zhao, Effects of electric-field treatment on a Ni-base superalloy, Rare Met., 26(2007), Suppl. 1, p. 210.
      [29]
      Y. Liu, L. Wang, Y. Ding, T. Cui, and Y.Q. Wang, Effects of electric field treatment on microstructure and deformation behavior of GH4199 superalloy, Chin. J. Nonferrous Met., 16(2006), No. 10, p. 1749.
      [30]
      Y. Liu, L. Wang, X.Y. Qiao, and Y.Q. Wang, Effects of strain rate on tensile deformation behavior of GH4199 superalloy after electric field treatment, Rare Met. Mater. Eng., 37(2008), No. 1, p. 66.
      [31]
      Y. Liu, Effects of Electric-Field Treatment on the Microstructure Evolution, Deformation Behavior and Corrosion Properties of Nickel-base Superalloys [Dissertation], Northeastern University, Shenyang, 2008.
      [32]
      D. Yuan, L. Wang, Y. Liu, X. Song, and C. Liu, Study on tensile property and dynamic recrystallization of GH4169 alloy with pulse current at elevated temperatures, [in] Proceedings of the 13th China Annual Meeting of Superalloy, Beijing, 2015, p. 343.
      [33]
      Y. Liu, L. Wang, H.H. Liu, X.D. Lu, and B.J. Zhang, Effects of pulse current on dynamic recrystallization behavior of GH4169 superalloy, Mater. Trans., 53(2012), No. 8, p. 1400. doi: 10.2320/matertrans.MBW201102
      [34]
      J.L. An, L. Wang, X. Song, and Y. Liu, New approach for plastic deformation behavior of GH4169 superalloy with in situ electric-pulse current at 800 °C, Mater. Sci. Eng. A, 707(2017), p. 356. doi: 10.1016/j.msea.2017.09.021
      [35]
      L. Wang, J.L. An, Y. Liu, and X. Song, Deformation behavior and strengthening–toughening mechanism of GH4169 alloy with multi-field coupling, Acta Metall. Sin., 55(2019), No. 9, p. 1185.
      [36]
      G.D. Li, L. Wang, Y. Liu, W. Zhang, X.Y. Qiao, and Y.Q. Wang, Effects of high density electropulsing treatment on aging kinetics of GH4199 alloy, Rare Met. Mater. Eng., 40(2011), No. 6, p. 961. doi: 10.1016/S1875-5372(11)60041-6
      [37]
      S.Y. Qin, L.G. Yan, and X.F. Zhang, Eliminating topologically closed-packed phases in deteriorated nickel-based superalloy by pulsed electric current, J. Alloys Compd., 862(2021), art. No. 158508. doi: 10.1016/j.jallcom.2020.158508
      [38]
      S.Y. Qin, J.Q. Hao, L.G. Yan, and X.F. Zhang, Ultrafast solution treatment to improve the comprehensive mechanical properties of superalloy by pulsed electric current, Scripta Mater., 199(2021), art. No. 113879. doi: 10.1016/j.scriptamat.2021.113879
      [39]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [40]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [41]
      J. Wang, L. Wang, Y. Liu, J.L. An, and X. Song, Tensile deformation behavior and microstructure evolution of AZ31 magnesium alloy under pulse current, Rare Met. Mater. Eng., 47(2018), No. 6, p. 1906.
      [42]
      H.Y. Xie, Q. Wang, F. Peng, K. Liu, X.H. Dong, and J.F. Wang, Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests, Trans. Nonferrous Met. Soc. China, 25(2015), No. 8, p. 2686. doi: 10.1016/S1003-6326(15)63892-4
      [43]
      Y.B. Jiang, L. Guan, G.Y. Tang, and Z.H. Zhang, Improved mechanical properties of Mg–9Al–1Zn alloy by the combination of aging, cold-rolling and electropulsing treatment, J. Alloys Compd., 626(2015), p. 297. doi: 10.1016/j.jallcom.2014.11.154
      [44]
      W. Jin, J.F. Fan, H. Zhang, Y. Liu, H.B. Dong, and B.S. Xu, Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment, J. Alloys Compd., 646(2015), p. 1. doi: 10.1016/j.jallcom.2015.04.196
      [45]
      Z.H. Shan, J. Yang, J.F. Fan, H. Zhang, Q. Zhang, Y.C. Wu, and H.B. Dong, Microstructure evolution and mechanical properties of an AZ61 alloy processed with TS-ECAP and EPT, Mater. Sci. Eng. A, 780(2020), art. No. 139195. doi: 10.1016/j.msea.2020.139195
      [46]
      C. Xu, Y.N. Li, and X.H. Rao, Effect of electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 12, p. 3777. doi: 10.1016/S1003-6326(14)63532-9
      [47]
      H.M. Liao, G.Y. Tang, Y.B. Jiang, Q. Xu, S.D. Sun, and J.N. Liu, Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy, Mater. Sci. Eng. A, 529(2011), p. 138. doi: 10.1016/j.msea.2011.09.007
      [48]
      W. Long, S. Zhang, Y.L. Liang, and M.G. Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 296. doi: 10.1007/s12613-020-1996-1
      [49]
      P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374. doi: 10.1007/s12613-019-1922-6
      [50]
      Q. Shi, Effects of Pulse Current on Tensile Deformation Behavior of Pure Titanium [Dissertation], Northeastern University, Shenyang, 2017.
      [51]
      D.W. Ao, X.R. Chu, Y. Yang, S.X. Lin, and J. Gao, Effect of electropulsing treatment on microstructure and mechanical behavior of Ti–6Al–4V alloy sheet under argon gas protection, Vacuum, 148(2018), p. 230. doi: 10.1016/j.vacuum.2017.11.017
      [52]
      H. Song, Z.J. Wang, and T.J. Gao, Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet, Trans. Nonferrous Met. Soc. China, 17(2007), No. 1, p. 87. doi: 10.1016/S1003-6326(07)60053-3
      [53]
      L.L. Gao, J.X. Liu, X.W. Cheng, S.K. Li, Y.M. Luo, and Q.W. Guo, Effects of short time electric pulse heat treatment on microstructures and mechanical properties of hot-rolled Ti–6Al–4V alloy, Mater. Sci. Eng. A, 618(2014), p. 104. doi: 10.1016/j.msea.2014.08.085
      [54]
      Z.Y. Zhao, G.F. Wang, Y.L. Zhang, Y.Q. Wang, and H.L. Hou, Fast recrystallization and phase transformation in ECAP deformed Ti–6Al–4V alloy induced by pulsed electric current, J. Alloys Compd., 786(2019), p. 733. doi: 10.1016/j.jallcom.2019.01.328
      [55]
      D.W. Ao, J. Gao, X.R. Chu, S.X. Lin, and J. Lin, Formability and deformation mechanism of Ti–6Al–4V sheet under electropulsing assisted incremental forming, Int. J. Solids Struct., 202(2020), p. 357. doi: 10.1016/j.ijsolstr.2020.06.028
      [56]
      H. Song and Z.J. Wang, Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing, Mater. Sci. Eng. A, 490(2008), No. 1-2, p. 1. doi: 10.1016/j.msea.2007.12.037
      [57]
      X.W. Ren, Z.J. Wang, X. Fang, H. Song, and J. Duan, The plastic flow model in the healing process of internal microcracks in pre-deformed TC4 sheet by pulse current, Mater. Des., 188(2020), art. No. 108428. doi: 10.1016/j.matdes.2019.108428
      [58]
      H. Song and Z.J. Wang, Improvement of mechanical properties of cold-rolled commercially pure Ti sheet by high density electropulsing, Trans. Nonferrous Met. Soc. China, 22(2012), No. 6, p. 1350. doi: 10.1016/S1003-6326(11)61325-3
      [59]
      L. Wang, X. Song, and Y. Liu, A Preparation Method of High-Strength Pure Titanium Sheet, Chinese Patent, CN201510904539.4, 2015.
      [60]
      T. Yu, D.W. Deng, G. Wang, and H.C. Zhang, Crack healing in SUS304 stainless steel by electropulsing treatment, J. Clean. Prod., 113(2016), p. 989. doi: 10.1016/j.jclepro.2015.12.060
      [61]
      Y.Z. Zhou, J.D. Guo, M. Gao, and G.H. He, Crack healing in a steel by using electropulsing technique, Mater. Lett., 58(2004), No. 11, p. 1732. doi: 10.1016/j.matlet.2003.10.049
      [62]
      A. Kumar and S.K. Paul, Healing of fatigue crack in steel with the application of pulsed electric current, Materialia, 14(2020), art. No. 100906. doi: 10.1016/j.mtla.2020.100906
      [63]
      C. Wu, X.M. Qiu, X.F. Xu, P.L. Yin, and Y.G. Zhao, A model for rapid austenitization in steel with ferrite and pearlite microstructure under electropulsing, Materialia, 6(2019), art. No. 100343. doi: 10.1016/j.mtla.2019.100343
      [64]
      J.T. Zhang, Z.H. Liu, J.X. Sun, H.L. Zhao, Q.Y. Shi, and D.W. Ma, Microstructure and mechanical property of electropulsing tempered ultrafine grained 42CrMo steel, Mater. Sci. Eng. A, 782(2020), art. No. 139213. doi: 10.1016/j.msea.2020.139213
      [65]
      A. Rahnama and R.S. Qin, The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel, Mater. Sci. Eng. A, 627(2015), p. 145. doi: 10.1016/j.msea.2014.12.084
      [66]
      R.A. Fard and M. Kazeminezhad, Effect of electropulsing on microstructure and hardness of cold-rolled low carbon steel, J. Mater. Res. Technol., 8(2019), No. 3, p. 3114. doi: 10.1016/j.jmrt.2019.02.023
      [67]
      D. Pan, Y.G. Zhao, X.F. Xu, Y.T. Wang, W.Q. Jiang, and X.Y. Chong, A novel strengthening and toughening strategy for T250 maraging steel: Cluster-orientation governed higher strength-ductility combination induced by electropulsing, Mater. Des., 169(2019), art. No. 107686. doi: 10.1016/j.matdes.2019.107686
      [68]
      J.J. Zhang, Z. Chen, Y.X. Wang, and B. Liu, Gibbs free energy calculation of Al–Cu–Li alloy with the effect of electric field from electron level, J. Alloys Compd., 457(2008), No. 1-2, p. 526. doi: 10.1016/j.jallcom.2007.03.061
      [69]
      X.F. Xu, Y.G. Zhao, B.D. Ma, and M. Zhang, Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment, J. Alloys Compd., 610(2014), p. 506. doi: 10.1016/j.jallcom.2014.05.063
      [70]
      X.F. Xu, Y.G. Zhao, X.D. Wang, Y.Y. Zhang, and Y.H. Ning, Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy, Mater. Sci. Eng. A, 654(2016), p. 278. doi: 10.1016/j.msea.2015.12.036
      [71]
      Y. Wang, Study on Mechanism of Microstructure Evolution of GH4169 Superalloy by Electric Field Treatment [Dissertation], Shenyang, 2013.
      [72]
      L. Wang, Y. Wang, Y. Liu, X. Song, X.D. Lü, and B.J. Zhang, Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 861. doi: 10.1007/s12613-013-0807-3
      [73]
      Y. Wang, L. Wang, Y.S. Chao, and X.D. Lü, Effect of aging temperatures with electric field on point defects in GH4169 alloy, J. Northeast. Univ. Nat. Sci., 32(2011), No. 12, p. 1733.
      [74]
      Y. Wang, L. Wang, J.L. Fei, Y. Liu, J.H. Du, and B.J. Zhang, Influence of electrostatic field treatment on microstructures and mechanical properties of GH4169 superalloy, Mater. Res. Innovations, 18(2014), Suppl. 4, p. S4-276.
      [75]
      J.L. An, L. Wang, X. Song, Y. Liu, Z.Y. Gai, and X.Z. Cao, Improving mechanism of both strength and ductility of GH4169 alloy induced by electric-pulse treatment, Mater. Sci. Eng. A, 724(2018), p. 439. doi: 10.1016/j.msea.2018.03.087
      [76]
      Y. Liu, L. Wang, F. Feng, B.J. Zhang, and G.P. Zhao, Effects of electropulsing treatment on coarsening behavior of γ′ phase in a nikel base superalloy, J. Mater. Metall., 10(2011), No. 4, p. 288.
      [77]
      Y.J. Yang, J.Q. Peng, L. Wang, and Y. Wang, Effect of electric field aging on microstructure evolution of GH4169 superalloy, Mater. Rep., 30(2016), Suppl. 2, p. 516.
      [78]
      Y. Wang, L. Wang, Y. Liu, X. Song, B.J. Zhang, and J.H. Du, Solute atom migration in GH4169 superalloy under electrostatic fields, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1176. doi: 10.1007/s12613-013-0852-y
      [79]
      X.Y. Zhang, L. Wang, Y. Wang, Y. Liu, X.D. Lv, and Y.S. Chao, Effect of electrostatic-field treatment on the diffusion behaveors of Fe and Cr in GH4169 superalloy, J. Iron Steel Res., 23(2011), Suppl. 2, p. 146.
      [80]
      L. Wang, J.L. An, Y. Liu, X. Song, G.H. Xu, and G.P. Zhao, Influence of electric field treatment on precipitation behavior of δ phase in GH4169 superalloy, Acta Metall. Sin., 51(2015), No. 10, p. 1235.
      [81]
      J.L. An, L. Wang, Y. Liu, W.L. Cai, and X. Song, The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature, Mater. Sci. Eng. A, 684(2017), p. 312. doi: 10.1016/j.msea.2016.12.029
      [82]
      Y. Liu, L. Wang, X. Song, and Y. Wang, Effect of external field treatment on the microstructure and deformation behavior of nickel-base superalloy, [in] E. Gdoutos and M. Konsta-Gdoutos, eds., Proceedings of the Third International Conference on Theoretical, Applied and Experimental Mechanics, Athens, 2020, p. 70.
      [83]
      K. Han, S.X. Qin, H.P. Li, J. Liu, Y. Wang, C.C. Zhang, P. Zhang, S. Zhang, H.B. Zhang, and H.P. Zhou, EBSD study of the effect of electropulsing treatment on the microstructure evolution in a typical cold-deformed Ni-based superalloy, Mater. Charact., 158(2019), art. No. 109936. doi: 10.1016/j.matchar.2019.109936
      [84]
      H.B. Zhang, C.C. Zhang, B.K. Han, J.F. Qiu, H.P. Li, S.X. Qin, J. Liu, Y. Wang, P. Zhang, Y.K. Pan, and H.P. Zhou, Evolution of grain boundary character distributions in a cold-deformed nickel-based superalloy during electropulsing treatment, J. Mater. Res. Technol., 9(2020), No. 3, p. 5723. doi: 10.1016/j.jmrt.2020.03.097
      [85]
      Y.B. Jiang, G.Y. Tang, C. Shek, J.X. Xie, Z.H. Xu, and Z.H. Zhang, Mechanism of electropulsing induced recrystallization in a cold-rolled Mg–9Al–1Zn alloy, J. Alloys Compd., 536(2012), p. 94. doi: 10.1016/j.jallcom.2012.05.014
      [86]
      B. Gao, L. Wang, Y. Liu, Y.W. He, and T. Mo, Effects of electron pulsing current on static recrystallization behaviour of GH4049 superalloy, Mater. Sci. Technol., 22(2014), No. 5, p. 1.
      [87]
      Z.J. Wang and H. Song, Effect of electropulsing on anisotropy behaviour of cold-rolled commercially pure titanium sheet, Trans. Nonferrous Met. Soc. China, 19(2009), Suppl. 2, p. s409.
      [88]
      Y. Zhou, G.Q. Chen, X.S. Fu, and W.L. Zhou, Effect of electropulsing on deformation behavior of Ti–6Al–4V alloy during cold drawing, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1012. doi: 10.1016/S1003-6326(14)63156-3
      [89]
      Z.H. Shan, J. Bai, J.F. Fan, H.F. Wu, H. Zhang, Q. Zhang, Y.C. Wu, W.G. Li, H.B. Dong, and B.S. Xu, Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT, J. Mater. Sci. Technol., 51(2020), p. 111. doi: 10.1016/j.jmst.2020.02.044
      [90]
      Y.B. Jiang, L. Guan, G.Y. Tang, C. Shek, and Z.H. Zhang, Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg–9Al–1Zn alloy strip, Mater. Sci. Eng. A, 528(2011), No. 16-17, p. 5627. doi: 10.1016/j.msea.2011.03.095

    Catalog


    • /

      返回文章
      返回