留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 2
Feb.  2022

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  3469
  • HTML全文浏览量:  1488
  • PDF下载量:  103
  • 被引次数: 0
Jiajian Li, Shuai Cao, Erol Yilmaz, and Yunpeng Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 345-355. https://doi.org/10.1007/s12613-021-2351-x
Cite this article as:
Jiajian Li, Shuai Cao, Erol Yilmaz, and Yunpeng Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 345-355. https://doi.org/10.1007/s12613-021-2351-x
引用本文 PDF XML SpringerLink
研究论文

纤维增强充填聚合物的压缩失效行为和破坏演化机理

  • 通讯作者:

    曹帅    E-mail: sandy_cao@ustb.edu.cn

    Erol Yilmaz    E-mail: erol.yilmaz@erdogan.edu.tr

文章亮点

  • (1) 本文详细阐述了聚丙烯纤维和玻璃纤维对于尾砂胶结充填体单轴抗压强度的影响机制,通过试验对比获取了上述两种纤维的合理掺量。
  • (2) 本文利用数字图像技术,揭示了在单轴压缩过程中,纤维增强充填体的破裂演化和裂纹扩展规律,为后续工业应用尾砂充填体的稳定性控制提供理论支撑。
  • (3) 本文还采用扫描电镜测试等手段,从微观角度出发揭示纤维和充填体内水化产物相互作用机理、探明水化产物类型,为后续从细观尺度研究充填体力学行为提供了借鉴。
  • 尾砂胶结充填体(Cemented tailings backfill,以下简称CTB)是由尾矿、胶凝材料和水制备的水泥基复合材料。类似于混凝土,充填体在外载荷作用下其表现出明显的脆性,易发生垮塌、连锁破坏等现象。本文提出采用聚丙烯纤维和玻璃纤维的组合形式,探究上述纤维对充填体单轴抗压强度的影响机制。在本文中,作者们进行了一系列的实验室测试,包括单轴压缩试验、数字图像相关测量和纤维增强充填体(Fiber reinforced cemented tailings backfill,以下简称FRCTB)的扫描电子显微镜特征,以获得FRCTB试样的单轴抗压强度(UCS)、破坏演变和微观结构特征。结果表明,添加纤维可以使CTB的UCS值提高6.90%至32.76%。FRCTB的UCS值随着聚丙烯纤维含量的增加而增加。此外,PP纤维对CTB的增强效果优于玻璃纤维的增强效果。纤维的加入可以使FRCTB的峰值应变增加0.39%到1.45%。FRCTB的峰值应变随着玻璃纤维含量的增加而增加。FRCTB的破坏模式是拉伸和剪切破坏相结合的。纤维的加入有效地抑制了裂缝的扩展,纤维对裂缝的桥接作用有效地改善了FRCTB的力学性能。本研究的结果可以为矿山回填设计和优化回填方法提供依据。

  • Research Article

    Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites

    + Author Affiliations
    • The ordinary cemented tailings backfill (CTB) is a cement-based composite prepared from tailings, cementitious materials, and water. In this study, a series of laboratory tests, including uniaxial compression, digital image correlation measurement, and scanning electron microscope characteristics of fiber-reinforced CTB (FRCTB), was conducted to obtain the uniaxial compressive strength (UCS), failure evolution, and microstructural characteristics of FRCTB specimens. The results show that adding fibers could increase the UCS values of the CTB by 6.90% to 32.76%. The UCS value of the FRCTB increased with the increase in the polypropylene (PP) fiber content. Moreover, the reinforcement effect of PP fiber on the CTB was better than that of glass fiber. The addition of fiber could increase the peak strain of the FRCTB by 0.39% to 1.45%. The peak strain of the FRCTB increased with the increase in glass fiber content. The failure pattern of the FRCTB was coupled with tensile and shear failure. The addition of fiber effectively inhibited the propagation of cracks, and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB. The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods.

    • loading
    • [1]
      M.J. Raffaldi, J.B. Seymour, J. Richardson, E. Zahl, and M. Board, Cemented paste backfill geomechanics at a narrow-vein underhand cut-and-fill mine, Rock Mech. Rock Eng., 52(2019), No. 12, p. 4925. doi: 10.1007/s00603-019-01850-4
      [2]
      L. Liu, P. Zhou, Y. Feng, B. Zhang, and K.I. Song, Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis, J. Cent. South Univ., 27(2020), No. 1, p. 267. doi: 10.1007/s11771-020-4294-1
      [3]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [4]
      L. Liu, J. Xin, C. Huan, Y.J. Zhao, X. Fan, L.J. Guo, and K.I. Song, Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
      [5]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [6]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [7]
      A. Antonova, M. Eik, V. Jokinen, and J. Puttonen, Effect of the roughness of steel fibre surface on its wettability and the cement paste close to fibre surface, Constr. Build. Mater., 289(2021), art. No. 123139. doi: 10.1016/j.conbuildmat.2021.123139
      [8]
      A.F. Guo, Z.H. Sun, and J. Satyavolu, Impact of modified kenaf fibers on shrinkage and cracking of cement pastes, Constr. Build. Mater., 264(2020), art. No. 120230. doi: 10.1016/j.conbuildmat.2020.120230
      [9]
      J.J. Li, S. Cao, and E. Yilmaz, Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag, Minerals, 12(2022), No. 1, art. No. 6. doi: 10.3390/min12010006
      [10]
      O. Hamdaoui, O. Limam, L. Ibos, and A. Mazioud, Thermal and mechanical properties of hardened cement paste reinforced with Posidonia-Oceanica natural fibers, Constr. Build. Mater., 269(2021), art. No. 121339. doi: 10.1016/j.conbuildmat.2020.121339
      [11]
      L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290. doi: 10.1016/j.conbuildmat.2018.07.155
      [12]
      J.J. Li, E. Yilmaz, and S. Cao, Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills, Constr. Build. Mater., 299(2021), art. No. 124288. doi: 10.1016/j.conbuildmat.2021.124288
      [13]
      M. Szeląg, Evaluation of cracking patterns of cement paste containing polypropylene fibers, Compos. Struct., 220(2019), p. 402. doi: 10.1016/j.compstruct.2019.04.038
      [14]
      X. Chen, X.Z. Shi, J. Zhou, Q.S. Chen, E.M. Li, and X.H. Du, Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill, Constr. Build. Mater., 190(2018), p. 211. doi: 10.1016/j.conbuildmat.2018.09.092
      [15]
      M. Hambach and D. Volkmer, Properties of 3D-printed fiber-reinforced Portland cement paste, Cem. Concr. Compos., 79(2017), p. 62. doi: 10.1016/j.cemconcomp.2017.02.001
      [16]
      D.Y. Wei, C.F. Du, Y.F. Lin, and B.M. Chang, Impact factors of hydration heat of cemented tailings backfill based on multi-index optimization, Case Stud. Therm. Eng., 18(2020), art. No. 100601. doi: 10.1016/j.csite.2020.100601
      [17]
      C.C. Qi, A. Fourie, Q.S. Chen, and Q.L. Zhang, A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill, J. Cleaner Prod., 183(2018), p. 566. doi: 10.1016/j.jclepro.2018.02.154
      [18]
      M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3-4, p. 397. doi: 10.1016/j.enggeo.2010.05.016
      [19]
      H.Q. Jiang and M. Fall, Yield stress and strength of saline cemented tailings in sub-zero environments: Portland cement paste backfill, Int. J. Miner. Process., 160(2017), p. 68. doi: 10.1016/j.minpro.2017.01.010
      [20]
      M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819. doi: 10.1016/j.cemconcomp.2010.08.002
      [21]
      D. Zheng, W.D. Song, J.X. Fu, G.L. Xue, J.J. Li, and S. Cao, Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression, Constr. Build. Mater., 258(2020), art. No. 120351. doi: 10.1016/j.conbuildmat.2020.120351
      [22]
      Z.Q. Huang, E. Yilmaz, and S. Cao, Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum, Minerals, 11(2021), No. 4, art. No. 409. doi: 10.3390/min11040409
      [23]
      D. Zheng, W.D. Song, S. Cao, J.J. Li, and L.J. Sun, Investigation on dynamical mechanics, energy dissipation, and microstructural characteristics of cemented tailings backfill under SHPB tests, Minerals, 11(2021), No. 5, art. No. 542. doi: 10.3390/min11050542
      [24]
      Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
      [25]
      J.R. Zheng, X.X. Sun, L.J. Guo, S.M. Zhang, and J.Y. Chen, Strength and hydration products of cemented paste backfill from sulphide-rich tailings using reactive MgO-activated slag as a binder, Constr. Build. Mater., 203(2019), p. 111. doi: 10.1016/j.conbuildmat.2019.01.047
      [26]
      D. Zheng, W.D. Song, Y.Y. Tan, S. Cao, Z.L. Yang, and L.J. Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
      [27]
      Y.L. Zhao, Z.Y. Ma, J.P. Qiu, X.G. Sun, and X.W. Gu, Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill, Powder Technol., 375(2020), p. 284. doi: 10.1016/j.powtec.2020.07.052
      [28]
      L. Liu, J. Xin, C. Huan, C.C. Qi, W.W. Zhou, and K.I. Song, Pore and strength characteristics of cemented paste backfill using sulphide tailings: Effect of sulphur content, Constr. Build. Mater., 237(2020), art. No. 117452. doi: 10.1016/j.conbuildmat.2019.117452
      [29]
      Q.S. Chen, Q.L. Zhang, A. Fourie, and C. Xin, Utilization of phosphogypsum and phosphate tailings for cemented paste backfill, J. Environ. Manage., 201(2017), p. 19. doi: 10.1016/j.jenvman.2017.06.027
      [30]
      G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
      [31]
      S. Cao, E. Yilmaz, Z.Y. Yin, G.L. Xue, W.D. Song, and L.J. Sun, CT scanning of internal crack mechanism and strength behavior of cement-fiber-tailings matrix composites, Cem. Concr. Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
      [32]
      G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. doi: 10.1016/j.conbuildmat.2021.122417
      [33]
      G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes, Constr. Build. Mater., 241(2020), art. No. 118113. doi: 10.1016/j.conbuildmat.2020.118113
      [34]
      W.B. Xu, Q.L. Li, and Y.L. Zhang, Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill, Constr. Build. Mater., 222(2019), p. 776. doi: 10.1016/j.conbuildmat.2019.06.203
      [35]
      F. Xu, S.L. Wang, T. Li, B. Liu, B.B. Li, and Y. Zhou, Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers, J. Build. Eng., 33(2021), art. No. 101572. doi: 10.1016/j.jobe.2020.101572
      [36]
      S. Cao, D. Zheng, E. Yilmaz, Z.Y. Yin, G.L. Xue, and F.D. Yang, Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects, Constr. Build. Mater., 256(2020), art. No. 119408. doi: 10.1016/j.conbuildmat.2020.119408
      [37]
      Y.D. Gan, H.Z. Zhang, Y. Zhang, Y.D. Xu, E. Schlangen, K.van Breugel, and B. Šavija, Experimental study of flexural fatigue behaviour of cement paste at the microscale, Int. J. Fatigue, 151(2021), art. No. 106378. doi: 10.1016/j.ijfatigue.2021.106378
      [38]
      B. Liu, J.K. Zhou, X.Y. Wen, X. Hu, and Z.H. Deng, Mechanical properties and constitutive model of carbon fiber reinforced coral concrete under uniaxial compression, Constr. Build. Mater., 263(2020), art. No. 120649. doi: 10.1016/j.conbuildmat.2020.120649
      [39]
      S. Chakilam and L. Cui, Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill, Constr. Build. Mater., 262(2020), art. No. 120854. doi: 10.1016/j.conbuildmat.2020.120854
      [40]
      Y.Y. Wang, Z.Q. Yu, and H.W. Wang, Experimental investigation on some performance of rubber fiber modified cemented paste backfill, Constr. Build. Mater., 271(2021), art. No. 121586. doi: 10.1016/j.conbuildmat.2020.121586
      [41]
      X. Chen, X.Z. Shi, J. Zhou, Z. Yu, and P.S. Huang, Determination of mechanical, flowability, and microstructural properties of cemented tailings backfill containing rice straw, Constr. Build. Mater., 246(2020), art. No. 118520. doi: 10.1016/j.conbuildmat.2020.118520
      [42]
      B.W. Liu, F. Yue, B. Chen, X.Y. Man, L. Chen, and S. Jaisee, Study on bond performance, flexural and crack extension behavior of base concrete prisms strengthen with strain-hardening cementitious composites (SHCC) using DIC technology, Constr. Build. Mater., 251(2020), art. No. 119035. doi: 10.1016/j.conbuildmat.2020.119035

    Catalog


    • /

      返回文章
      返回