Cite this article as: |
Qiao-bao Zhang, Yong-chang Liu, and Xiao-bo Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1545-1548. https://doi.org/10.1007/s12613-021-2354-7 |
[1] |
Q.K. Du, Q.X.Wu, H.X. Wang, X.J. Meng, Z.K. Ji, S. Zhao, W.W. Zhu, C. Liu, M. Ling, and C.D. Liang, Carbon dot-modified silicon nanoparticles for lithium ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
|
[2] |
Y.J. Qiao, H. Zhang, Y.X. Hu, W.P. Li, W.J. Liu, H.M. Shang, M.Z. Qu, G.C. Peng, and Z.W. Xie, A chain-like compound of Si@CNTs nanostructure and MOF-derived porous carbon as anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
|
[3] |
J. Yang, Y.H. Lin, B.S. Guo, M.S. Wang, J.C. Chen, Z.Y. Ma, Y. Huang, and X. Li, Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621. doi: 10.1007/s12613-021-2270-x
|
[4] |
Z.Y. Feng, W.J. Peng, Z.X. Wang, H.J. Guo, X.H. Li, G.C. Yan, and J.X. Wang, Review on silicon-based alloys for lithium ion battery anode, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
|
[5] |
Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629. doi: 10.1007/s12613-021-2249-7
|
[6] |
T. Wei, Z.H. Zhang, Q. Zhang, J.H. Lu, Q.M. Xiong, F.Y. Wang, X.P. Zhou, W.J. Zhao, and X.Y. Qiu, Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
|
[7] |
Z.H. Zhang, T. Wei, J.H. Lu, Q.M. Xiong, Y.H. Ji, Z.Y. Zhu, and L.T. Zhang, Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
|
[8] |
L.Y. Wang, L.F. Wang, R. Wang, R. Xu, C. Zhan, W. Yang, and G.C. Liu, Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
|
[9] |
M.T. Duan, M.R. Wu, K. Xue, Z.X. Bian, J. Shi, X.M. Guo, F. Cao, J.H. Zhang, Q.H. Kong, and F. Zhang, Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647. doi: 10.1007/s12613-021-2315-1
|
[10] |
M.R. Wu, M.Y. Gao, S.Y. Zhang, R. Yang, Y.M. Chen, S.Q. Sun, J.F. Xie, X.M. Guo, F. Cao, and J.H. Zhang, High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
|
[11] |
D. Wang, Q. Ma, K.H. Tian, C.Q. Duan, Z.Y. Wang, and Y.G. Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimension porous carbon as anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1666. doi: 10.1007/s12613-021-2286-2
|
[12] |
F.H. Chen, Y.W. Wu, H.H. Zhang, Z.T. Long, X.X. Lin, M.Z. Chen, Q. Chen, Y.F. Luo, S.L. Chou, and R.H. Zeng, The modulation of discharge plateau of benzoquinone for sodium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1675. doi: 10.1007/s12613-021-2261-y
|
[13] |
X.H. Qin, Y.H. Du, P.C. Zhang, X.Y. Wang, Q.Q. Lu, A.K. Yang, and J.C. Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684. doi: 10.1007/s12613-021-2312-4
|
[14] |
B.S. Boroujeny, P.R. Goojani, and E. Akbari, Effects of strain-induced melt activation treatment on the microstructure and properties of Zn sacrificial anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1693. doi: 10.1007/s12613-021-2328-9
|
[15] |
H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
|
[16] |
X.H. Liu, F.H. Wang, C.Y. Shao, G.F. Du, and B.Q. Yao, Kinetically controlled synthesis of atomically precise silver nanoclusters for catalytic reduction of 4-nitrophenol, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1716. doi: 10.1007/s12613-020-2186-x
|
[17] |
M.M. Atta, H.A. Ashry, G.M. Nasr, and H.A. Abd El-Rehim, Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1726. doi: 10.1007/s12613-020-2146-5
|
[18] |
P. Zhang, Y.H. Wu, H.R. Sun, J.Q. Zhao, Z.M. Cheng, and X.H. Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1735. doi: 10.1007/s12613-021-2272-8
|