留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1704
  • HTML全文浏览量:  462
  • PDF下载量:  92
  • 被引次数: 0
Dongyao Zhang, Chuanchang Li, Niangzhi Lin, Baoshan Xie,  and Jian Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 168-176. https://doi.org/10.1007/s12613-021-2357-4
Cite this article as:
Dongyao Zhang, Chuanchang Li, Niangzhi Lin, Baoshan Xie,  and Jian Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 168-176. https://doi.org/10.1007/s12613-021-2357-4
引用本文 PDF XML SpringerLink
研究论文

云母/聚乙二醇复合相变储热材料的研究

  • 通讯作者:

    李传常    E-mail: chuanchangli@126.com

文章亮点

  • (1) 基于云母矿物独特的形貌结构和储热特征,挖掘云母在储热材料领域中的应用潜力,拓宽云母的应用领域。
  • (2) 研究了云母及其复合相变储热材料的理化性质,云母能够有效解决固-液相变材料相变泄漏及导热系数低的问题。
  • (3) 云母在储热领域中的研究少有报道,开展云母基复合相变储热材料的基础研究,展现云母基功能材料的新方向。
  • 储热技术的发展能够有效解决能源供需不匹配的矛盾,储能技术的实施离不开储热材料。相变材料作为储热材料的核心,在太阳能热利用、建筑节能、电池热管理等诸多领域展开了研究应用。但是相变材料存在固-液相变过程泄漏、导热系数偏低等缺陷,阻碍了其实际应用。云母矿物具有独特形貌结构、良好的热稳定性等原料优势,同时具备简单易得、价格低廉的成本优势。本文旨在开发一种高性能、低成本的复合相变储热材料,采用真空浸渍法制备了云母/聚乙二醇复合相变储热材料,借助X射线衍射仪、傅里叶红外光谱仪表征复合相变材料的晶体和化学结构;热重分析仪表征复合相变材料的热稳定性能;差示扫描量热仪获取复合相变材料的相变温度、相变潜热和循环稳定性能;储放热性能测试和瞬态温度响应实验获取了复合相变材料储存/释放热能的速率以及对温度变化的响应快慢;复合相变材料的导热系数为0.59 W·m−1·K−1,是纯聚乙二醇导热系数(0.25 W·m−1·K−1)的2.36倍;泄漏测试对复合相变材料形状稳定性能进行了测试。研究结果表明,云母作为储热材料的支撑基体,与相变材料不发生化学反应,能够有效地解决相变材料相变过程泄漏和导热系数较低的问题,在储热领域中具有良好的应用潜力。

  • Research Article

    Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage

    + Author Affiliations
    • Mica was used as a supporting matrix for composite phase change materials (PCMs) in this work because of its distinctive morphology and structure. Composite PCMs were prepared using the vacuum impregnation method, in which mica served as the supporting material and polyethylene glycol (PEG) served as the PCM. Fourier transform infrared and X-ray diffraction analysis confirmed that the addition of PEG had no effect on the crystal structure of mica. Moreover, no chemical reaction occurred between PEG and mica during the vacuum impregnation process, and no new substance was formed. The maximum load of mica-stabilized PEG was 46.24%, the phase change temperature of M400/PEG was 46.03°C, and the latent heat values of melting and cooling were 77.75 and 77.73 J·g−1, respectively. The thermal conductivity of M400/PEG was 2.4 times that of pure PEG. The thermal infrared images indicated that the thermal response of M400/PEG improved relative to that of pure PEG. The leakage test confirmed that mica could stabilize PEG and that M400/PEG had great form-stabilized property. These results demonstrate that M400/PEG has potential in the field of building energy conservation.

    • loading
    • [1]
      A. Sarı, A. Bicer, A. Al-Ahmed, F.A. Al-Sulaiman, M.H. Zahir, and S.A. Mohamed, Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage, Sol. Energy Mater. Sol. Cells, 179(2018), p. 353. doi: 10.1016/j.solmat.2017.12.036
      [2]
      P.M. Hou, M.H. Qin, S.Q. Cui, and K. Zu, Preparation and characterization of metal-organic framework /microencapsulated phase change material composites for indoor hygrothermal control, J. Build. Eng., 31(2020), art. No. 101345. doi: 10.1016/j.jobe.2020.101345
      [3]
      F.Q. Zhou, F. Qin, Z. Yi, W.T. Yao, Z.M. Liu, X.W. Wu, and P.H. Wu, Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance, Phys. Chem. Chem. Phys., 23(2021), No. 31, p. 17041. doi: 10.1039/D1CP03036A
      [4]
      Y.Q. Jiang, G. Cheng, Y.H. Li, Z.X. He, J. Zhu, W. Meng, L. Dai, and L. Wang, Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework, Chem. Eng. J., 415(2021), art. No. 129014. doi: 10.1016/j.cej.2021.129014
      [5]
      R.D. Beltrán and J. Martínez-Gómez, Analysis of phase change materials (PCM) for building wallboards based on the effect of environment, J. Build. Eng., 24(2019), art. No. 100726. doi: 10.1016/j.jobe.2019.02.018
      [6]
      Y.N. Gao, F. He, X. Meng, Z.Y. Wang, M. Zhang, H.T. Yu, and W.J. Gao, Thermal behavior analysis of hollow bricks filled with phase-change material (PCM), J. Build. Eng., 31(2020), art. No. 101447. doi: 10.1016/j.jobe.2020.101447
      [7]
      B.J. Nie, Z. Du, B.Y. Zou, Y.L. Li, and Y.L. Ding, Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications, Energy Build., 214(2020), art. No. 109895. doi: 10.1016/j.enbuild.2020.109895
      [8]
      Y.L. Zhu, Y. Chi, S.E. Liang, X. Luo, K.P. Chen, C.R. Tian, J.H. Wang, and L. Zhang, Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage, Sol. Energy Mater. Sol. Cells, 176(2018), p. 212. doi: 10.1016/j.solmat.2017.12.006
      [9]
      T.T. Wang, C.P. Li, X.S. Xie, B.A. Lu, Z.X. He, S.Q. Liang, and J. Zhou, Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives, ACS Nano, 14(2020), No. 12, p. 16321. doi: 10.1021/acsnano.0c07041
      [10]
      X. Min, J. Xiao, M.H. Fang, W.A. Wang, Y.J. Zhao, Y.G. Liu, A.M. Abdelkader, K. Xi, R.V. Kumar, and Z.H. Huang, Potassium-ion batteries: Outlook on present and future technologies, Energy Environ. Sci., 14(2021), No. 4, p. 2186. doi: 10.1039/D0EE02917C
      [11]
      T. Qiu, J.G. Yang, and X.J. Bai, Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 162. doi: 10.1007/s12613-019-1859-9
      [12]
      B. Yilmaz, B. Yüksel, G. Orhan, D. Aydin, and Z. Utlu, Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 112. doi: 10.1007/s12613-019-1890-x
      [13]
      Y.X. Yu, Y.F. Zhou, Y.J. Zhang, Y.Q. Zhang, X.D. Liu, X.J. Liang, J.P. Liu, S.Q. Chen, and W.D. Xiang, Novel CsPbX3@mica composites with excellent optical properties for high efficiency and wide color gamut white light-emitting diode, J. Lumin., 236(2021), art. No. 118129. doi: 10.1016/j.jlumin.2021.118129
      [14]
      V. Kashyap, S. Sakunkaewkasem, P. Jafari, M. Nazari, B. Eslami, S. Nazifi, P. Irajizad, M.D. Marquez, T.R. Lee, and H. Ghasemi, Full spectrum solar thermal energy harvesting and storage by a molecular and phase-change hybrid material, Joule, 3(2019), No. 12, p. 3100. doi: 10.1016/j.joule.2019.11.001
      [15]
      M.A. Gerkman and G.G.D. Han, Toward controlled thermal energy storage and release in organic phase change materials, Joule, 4(2020), No. 8, p. 1621. doi: 10.1016/j.joule.2020.07.011
      [16]
      Y.L. Song, N. Zhang, Y.G. Jing, X.L. Cao, Y.P. Yuan, and F. Haghighat, Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage, Energy, 189(2019), art. No. 116175. doi: 10.1016/j.energy.2019.116175
      [17]
      M.C. Browne, B. Norton, and S.J. McCormack, Phase change materials for photovoltaic thermal management, Renewable Sustainable Energy Rev., 47(2015), p. 762. doi: 10.1016/j.rser.2015.03.050
      [18]
      A. Papadimitratos, S. Sobhansarbandi, V. Pozdin, A. Zakhidov, and F. Hassanipour, Evacuated tube solar collectors integrated with phase change materials, Sol. Energy, 129(2016), p. 10. doi: 10.1016/j.solener.2015.12.040
      [19]
      J. Triano-Juárez, E.V. Macias-Melo, I. Hernández-Pérez, K.M. Aguilar-Castro, and J. Xamán, Thermal behavior of a phase change material in a building roof with and without reflective coating in a warm humid zone, J. Build. Eng., 32(2020), art. No. 101648. doi: 10.1016/j.jobe.2020.101648
      [20]
      M.Y. Luo, J.Q. Song, Z.Y. Ling, Z.G. Zhang, and X.M. Fang, Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40°C to 50°C, Mater. Today Energy, 20(2021), art. No. 100652. doi: 10.1016/j.mtener.2021.100652
      [21]
      Z.J. An, L. Jia, Y. Ding, C. Dang, and X.J. Li, A review on lithium-ion power battery thermal management technologies and thermal safety, J. Therm. Sci., 26(2017), No. 5, p. 391. doi: 10.1007/s11630-017-0955-2
      [22]
      Y. Lu, X.D. Xiao, J. Fu, C.M. Huan, S. Qi, Y.J. Zhan, Y.Q. Zhu, and G. Xu, Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning, Chem. Eng. J., 355(2019), p. 532. doi: 10.1016/j.cej.2018.08.189
      [23]
      X. Min, B. Sun, S. Chen, M.H. Fang, X.W. Wu, Y.G. Liu, A. Abdelkader, Z.H. Huang, T. Liu, K. Xi, and R. Vasant Kumar, A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries, Energy Storage Mater., 16(2019), p. 597. doi: 10.1016/j.ensm.2018.08.002
      [24]
      Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, and G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy, 80(2021), art. No. 105454. doi: 10.1016/j.nanoen.2020.105454
      [25]
      L. Yang, Y.P. Yuan, N. Zhang, Y.F. Dong, Y.F. Sun, and W.H. Ji, Photo-to-thermal conversion and energy storage of lauric acid/expanded graphite composite phase change materials, Int. J. Energy Res., 44(2020), No. 11, p. 8555. doi: 10.1002/er.5542
      [26]
      C. Confalonieri, A.T. Grimaldi, and E. Gariboldi, Ball-milled Al–Sn alloy as composite Phase Change Material, Mater. Today Energy, 17(2020), art. No. 100456. doi: 10.1016/j.mtener.2020.100456
      [27]
      Y.Y. Cui, Y.J. Ke, C. Liu, Z. Chen, N. Wang, L.M. Zhang, Y. Zhou, S.C. Wang, Y.F. Gao, and Y. Long, Thermochromic VO2 for energy-efficient smart windows, Joule, 2(2018), No. 9, p. 1707. doi: 10.1016/j.joule.2018.06.018
      [28]
      Y. Zhou, S.C. Wang, J.Q. Peng, Y.T. Tan, C.C. Li, F.Y.C. Boey, and Y. Long, Liquid thermo-responsive smart window derived from hydrogel, Joule, 4(2020), No. 11, p. 2458. doi: 10.1016/j.joule.2020.09.001
      [29]
      X.H. Bao, Y.Y. Tian, L. Yuan, H.Z. Cui, W.C. Tang, W.H. Fung, and H. Qi, Development of high performance PCM cement composites for passive solar buildings, Energy Build., 194(2019), p. 33. doi: 10.1016/j.enbuild.2019.04.011
      [30]
      Y.X. Lin, Y.T. Jia, G. Alva, and G.Y. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable Sustainable Energy Rev., 82(2018), p. 2730. doi: 10.1016/j.rser.2017.10.002
      [31]
      Y.Y. Deng and L.J. Yang, Preparation and characterization of polyethylene glycol (PEG) hydrogel as shape-stabilized phase change material, Appl. Therm. Eng., 114(2017), p. 1014. doi: 10.1016/j.applthermaleng.2016.11.207
      [32]
      S.A. Memon, H.Z. Cui, H. Zhang, and F. Xing, Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete, Appl. Energy, 139(2015), p. 43. doi: 10.1016/j.apenergy.2014.11.022
      [33]
      Y.J. Zhao, X. Min, Z.H. Huang, Y.G. Liu, X.W. Wu, and M.H. Fang, Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage, Energy Build., 158(2018), p. 1049. doi: 10.1016/j.enbuild.2017.10.078
      [34]
      N. Zhang and Y.P. Yuan, Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage, Energy Built Environ., 1(2020), No. 4, p. 410. doi: 10.1016/j.enbenv.2020.04.003
      [35]
      M.M. Joybari, F. Haghighat, S. Seddegh, and Y.P. Yuan, Simultaneous charging and discharging of phase change materials: Development of correlation for liquid fraction, Sol. Energy, 188(2019), p. 788. doi: 10.1016/j.solener.2019.06.051
      [36]
      C.Z. Liu, Z.H. Rao, J.T. Zhao, Y.T. Huo, and Y.M. Li, Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement, Nano Energy, 13(2015), p. 814. doi: 10.1016/j.nanoen.2015.02.016
      [37]
      C.C. Li, X.B. Zhao, B. Zhang, B.S. Xie, Z.X. He, J. Chen, and J.J. He, Stearic acid/copper foam as composite phase change materials for thermal energy storage, J. Therm. Sci., 29(2020), No. 2, p. 492. doi: 10.1007/s11630-020-1272-8
      [38]
      L.X. Chai, X.D. Wang, and D.Z. Wu, Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness, Appl. Energy, 138(2015), p. 661. doi: 10.1016/j.apenergy.2014.11.006
      [39]
      X.B. Huang, X. Chen, A. Li, D. Atinafu, H.Y. Gao, W.J. Dong, and G. Wang, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J., 356(2019), p. 641. doi: 10.1016/j.cej.2018.09.013
      [40]
      Y.J. Zhao, X. Min, Z.P. Ding, S. Chen, C.Z. Ai, Z.L. Liu, T.Z. Yang, X.W. Wu, Y.G. Liu, S.W. Lin, Z.H. Huang, P. Gao, H. Wu, and M.H. Fang, Metal-based nanocatalysts via a universal design on cellular structure, Adv. Sci., 7(2020), No. 3, art. No. 1902051. doi: 10.1002/advs.201902051
      [41]
      J.W. Li, X.C. Zuo, X.G. Zhao, D.K. Li, and H.M. Yang, Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage, Appl. Clay Sci., 183(2019), art. No. 105358. doi: 10.1016/j.clay.2019.105358
      [42]
      H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233. doi: 10.1016/j.solmat.2019.110233
      [43]
      N. Xie, J.M. Luo, Z.P. Li, Z.W. Huang, X.N. Gao, Y.T. Fang, and Z.G. Zhang, Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage, Sol. Energy Mater. Sol. Cells, 189(2019), p. 33. doi: 10.1016/j.solmat.2018.09.016
      [44]
      C.M. Jia, X.Y. Zhao, Y.H. Lai, J.J. Zhao, P.C. Wang, D.S. Liou, P. Wang, Z.H. Liu, W.H. Zhang, W. Chen, Y.H. Chu, and J.Y. Li, Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate, Nano Energy, 60(2019), p. 476. doi: 10.1016/j.nanoen.2019.03.053
      [45]
      B. Ilić, V. Radonjanin, M. Malešev, M. Zdujić, and A. Mitrović, Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica, Appl. Clay Sci., 123(2016), p. 173. doi: 10.1016/j.clay.2016.01.029
      [46]
      B.T. Tang, H.P. Wei, D.F. Zhao, and S.F. Zhang, Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping, Sol. Energy Mater. Sol. Cells, 161(2017), p. 183. doi: 10.1016/j.solmat.2016.12.003
      [47]
      H.B. Dai, H.X. Li, and F.H. Wang, An alternative process for the preparation of Cu-coated mica composite powder, Surf. Coat. Technol., 201(2006), No. 6, p. 2859. doi: 10.1016/j.surfcoat.2006.05.043
      [48]
      A. Reddy Polu and R. Kumar, Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes, J. Chem., 8(2011), No. 1, p. 347. doi: 10.1155/2011/628790
      [49]
      C.C. Li, B.S. Xie, D.L. Chen, J. Chen, W. Li, Z.S. Chen, S.W. Gibb, and Y. Long, Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage, Energy, 166(2019), p. 246. doi: 10.1016/j.energy.2018.10.082

    Catalog


    • /

      返回文章
      返回