留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(5)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  992
  • HTML全文浏览量:  377
  • PDF下载量:  18
  • 被引次数: 0
Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu,  and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1280-1285. https://doi.org/10.1007/s12613-021-2361-8
Cite this article as:
Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu,  and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1280-1285. https://doi.org/10.1007/s12613-021-2361-8
引用本文 PDF XML SpringerLink
研究论文

基于自组装二氧化钛空穴阻挡层的高效钙钛矿太阳能电池

  • 通讯作者:

    楚亮    E-mail: chuliang@njupt.edu.cn

文章亮点

  • (1) 开发了免退火的自组装室温工艺制备TiO2致密层并应用于钙钛矿太阳能电池。
  • (2) 阐述了室温沉积TiO2的机理。
  • (3) 基于自组装TiO2的全低温钙钛矿太阳能电池的能力转化效率为16.41%。
  • 器件兼容功能层的自组装工艺是一种简单、可行和节能的策略。在介孔钙钛矿太阳能电池(perovskite solar cells, PSCs)中,致密的TiO2膜起到空穴阻挡层的作用,而介孔的TiO2膜起到电子传输层的作用。然而,这两层通常都要通过高温退火法获得。在此,我们通过室温自组装工艺沉积了致密的TiO2薄膜,以作为PSCs有效的空穴阻挡层。通过沉积时间控制致密TiO2薄膜的厚度。优化致密TiO2薄膜的厚度(80 nm),有无空穴传输层的介孔PSCs的能量转化效率分别为17.95%和10.66%。值得注意的是,基于自组装TiO2的全低温PSCs显示出16.41%的能量转化效率。
  • Research Article

    Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells

    + Author Affiliations
    • The self-assembly process for compatible functional layers of devices is a simple, feasible, and energy-saving strategy. In mesoporous perovskite solar cells (PSCs), compact and scaffold TiO2 films generally function as the hole-blocking and electron-transporting layers, respectively. However, both of these layers are usually generated through a high-temperature annealing process. Here, we deposited TiO2 compact films through a room-temperature self-assembly process as effective hole-blocking layers for PSCs. The thickness of TiO2 compact films can be easily controlled by the deposition time. Through the optimization of TiO2 compact films (80 nm), the power conversion efficiency (PCE) of mesoporous PSCs without and with hole conductor layers increases up to 10.66% and 17.95%, respectively. Notably, an all-low-temperature planar PSC with the self-assembled TiO2 layer exhibits a PCE of 16.41%.
    • loading
    • [1]
      A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
      [2]
      L. Chu and L.M. Ding, Self-assembled monolayers in perovskite solar cells, J. Semicond., 42(2021), No. 9, art. No. 090202. doi: 10.1088/1674-4926/42/9/090202
      [3]
      L. Chu, Pseudohalide anion engineering for highly efficient and stable perovskite solar cells, Matter, 4(2021), No. 6, p. 1762. doi: 10.1016/j.matt.2021.05.007
      [4]
      J. Yang, L. Chu, R.Y. Hu, W. Liu, N.J. Liu, Y.H. Ma, W. Ahmad, and X.A. Li, Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets, Nano Res., 14(2021), No. 7, p. 2139. doi: 10.1007/s12274-021-3408-x
      [5]
      X.C. Zhang, Strain control for halide perovskites, Matter, 2(2020), No. 2, p. 294. doi: 10.1016/j.matt.2020.01.010
      [6]
      National Renewable Energy Laboratory, Best Research Cell Efficiency [2020-09-19]. https://www.nrel.gov/pv/cell-efficiency.html.
      [7]
      W.E.I. Sha, H. Zhang, Z.S. Wang, H.L. Zhu, X.G. Ren, F. Lin, A.K.Y. Jen, and W.C.H. Choy, Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model, Adv. Energy Mater., 8(2018), No. 8, art. No. 1701586. doi: 10.1002/aenm.201701586
      [8]
      M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338(2012), No. 6107, p. 643. doi: 10.1126/science.1228604
      [9]
      G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3, Science, 342(2013), No. 6156, p. 344. doi: 10.1126/science.1243167
      [10]
      S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342(2013), No. 6156, p. 341. doi: 10.1126/science.1243982
      [11]
      P.F. Fu, S. Hu, J. Tang, and Z.W. Xiao, Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites, Front. Optoelectron., 14(2021), No. 2, p. 252. doi: 10.1007/s12200-021-1227-z
      [12]
      J.H. Zheng, L.X. Zhu, Z.T. Shen, F.M. Li, L.Y. Ling, H.L. Li, and C. Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
      [13]
      Y. Xie, J. Yin, J. Zheng, Y. Fan, J. Wu, and X. Zhang, Facile RbBr interface modification improves perovskite solar cell efficiency, Mater. Today Chem., 14(2019), art. No. 100179. doi: 10.1016/j.mtchem.2019.07.001
      [14]
      W. Liu, N.J. Liu, S.L. Ji, H.F. Hua, Y.H. Ma, R.Y. Hu, J. Zhang, L. Chu, X.A. Li, and W. Huang, Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells, Nano Micro Lett., 12(2020), No. 1, art. No. 119. doi: 10.1007/s40820-020-00457-7
      [15]
      J. Wang, M.C. Qin, H. Tao, W.J. Ke, Z. Chen, J.W. Wan, P.L. Qin, L.B. Xiong, H.W. Lei, H.Q. Yu, and G.J. Fang, Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer, Appl. Phys. Lett., 106(2015), No. 12, art. No. 121104. doi: 10.1063/1.4916345
      [16]
      J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499(2013), No. 7458, p. 316. doi: 10.1038/nature12340
      [17]
      T.S. Su, T.Y. Hsieh, C.Y. Hong, and T.C. Wei, Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells, Sci. Rep., 5(2015), art. No. 16098. doi: 10.1038/srep16098
      [18]
      W.J. Ke, G.J. Fang, J. Wang, P.L. Qin, H. Tao, H.W. Lei, Q. Liu, X. Dai, and X.Z. Zhao, Perovskite solar cell with an efficient TiO2 compact film, ACS Appl. Mater. Interfaces, 6(2014), No. 18, p. 15959. doi: 10.1021/am503728d
      [19]
      F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, and T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates, Adv. Energy Mater., 5(2015), No. 8, art. No. 1401808. doi: 10.1002/aenm.201401808
      [20]
      S. Aharon, S. Gamliel, B. El Cohen, and L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells, Phys. Chem. Chem. Phys., 16(2014), No. 22, p. 10512. doi: 10.1039/C4CP00460D
      [21]
      Y.T. Fang, S.B. Zhai, L. Chu, and J.S. Zhong, Advances in halide perovskite memristor from lead-based to lead-free materials, ACS Appl. Mater. Interfaces, 13(2021), No. 15, p. 17141. doi: 10.1021/acsami.1c03433
      [22]
      K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, and M. Grätzel, Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells, ACS Nano, 10(2016), No. 6, p. 6306. doi: 10.1021/acsnano.6b02613
      [23]
      A.Y. Mei, X. Li, L.F. Liu, Z.L. Ku, T.F. Liu, Y.G. Rong, M. Xu, M. Hu, J.Z. Chen, Y. Yang, M. Grätzel, and H.W. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345(2014), No. 6194, p. 295. doi: 10.1126/science.1254763
      [24]
      H. Hu, B.H. Dong, H.T. Hu, F.X. Chen, M.Q. Kong, Q.P. Zhang, T.Y. Luo, L. Zhao, Z.G. Guo, J. Li, Z.X. Xu, S.M. Wang, D. Eder, and L. Wan, Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 17999. doi: 10.1021/acsami.6b02701
      [25]
      L. Chu, W. Liu, Z.F. Qin, R. Zhang, R.Y. Hu, J. Yang, J.P. Yang, and X.A. Li, Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes, Sol. Energy Mater. Sol. Cells, 178(2018), p. 164. doi: 10.1016/j.solmat.2018.01.010
      [26]
      J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49. doi: 10.1007/s12613-021-2341-z
      [27]
      H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
      [28]
      J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, and M.H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach, J. Phys. Chem. B, 109(2005), No. 27, p. 13056. doi: 10.1021/jp052203l
      [29]
      C.K. Xu, J.M. Wu, U.V. Desai, and D. Gao, High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays, Nano Lett., 12(2012), No. 5, p. 2420. doi: 10.1021/nl3004144
      [30]
      B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, and M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir, 17(2001), No. 9, p. 2664. doi: 10.1021/la0015213
      [31]
      A. Orendorz, J. Wüsten, C. Ziegler, and H. Gnaser, Photoelectron spectroscopy of nanocrystalline anatase TiO2 films, Appl. Surf. Sci., 252(2005), No. 1, p. 85. doi: 10.1016/j.apsusc.2005.02.002
      [32]
      E. McCafferty and J.P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method, Surf. Interface Anal., 26(1998), No. 8, p. 549. doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
      [33]
      K. Cao, Z.X. Zuo, J. Cui, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Grätzel, and M.K. Wang, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture, Nano Energy, 17(2015), p. 171. doi: 10.1016/j.nanoen.2015.08.009
      [34]
      N.J. Liu, L. Chu, W. Ahmad, R.Y. Hu, R.F. Luan, W. Liu, J. Yang, Y.H. Ma, and X.A. Li, Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells, J. Power Sources, 499(2021), art. No. 229970. doi: 10.1016/j.jpowsour.2021.229970
      [35]
      Y.Z. Wu, X.D. Yang, H. Chen, K. Zhang, C.J. Qin, J. Liu, W.Q. Peng, A. Islam, E.B. Bi, F. Ye, M.S. Yin, P. Zhang, and L.Y. Han, Highly TiO2 compact films for efficient hole-blocking in perovskite solar cells, Appl. Phys. Express, 7(2014), No. 5, art. No. 052301. doi: 10.7567/APEX.7.052301
      [36]
      P.J. Wang, Z.P. Shao, M. Ulfa, and T. Pauporté, Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response, J. Phys. Chem. C, 121(2017), No. 17, p. 9131. doi: 10.1021/acs.jpcc.7b00979

    Catalog


    • /

      返回文章
      返回