留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1793
  • HTML全文浏览量:  486
  • PDF下载量:  113
  • 被引次数: 0
Hui Dang, Zhidong Chang, Hualei Zhou, Sihang Ma, Min Li, and Jialing Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1715-1721. https://doi.org/10.1007/s12613-021-2366-3
Cite this article as:
Hui Dang, Zhidong Chang, Hualei Zhou, Sihang Ma, Min Li, and Jialing Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1715-1721. https://doi.org/10.1007/s12613-021-2366-3
引用本文 PDF XML SpringerLink
研究论文

利用二元低共熔碳酸盐从模拟废旧锂离子电池火法渣中提取锂

  • 通讯作者:

    常志东    E-mail: zdchang@ustb.edu.cn

    周花蕾    E-mail: hlzhou@ustb.edu.cn

文章亮点

  • (1) 开发了一种从废旧锂电池火法渣中提锂的新体系。
  • (2) 通过量化计算研究了锂离子从晶格中释放的机理。
  • (3) 总结并提出了低共熔碳酸盐作焙烧剂提锂的机理。
  • 从废旧锂离子电池(LIBs)的火法渣中有效和低温提取锂仍然是一个巨大的挑战。在本工作中,将碳酸钾/碳酸钠(K2CO3/Na2CO3)作为焙烧剂用于火法渣中锂的提取,其中K2CO3和Na2CO3能够在720℃下形成低共熔盐。通过K2CO3/Na2CO3焙烧然后水浸成功地将锂从渣中提取出来。理论计算结果表明,K+/Na+吸附后Li–O键的长度增加。在K2CO3/Na2CO3焙烧后,Li+容易从LiAlSi2O6的晶格中释放出来。热重–差示扫描量热法结果表明,在720°C时可以观察到K2CO3和Na2CO3的低共熔现象,在720°C以上,炉渣和低共熔熔盐开始发生反应。X射线衍射结果表明,渣中的Li+被K2CO3中的K+交换,同时形成KAlSiO4,而Na2CO3主要起到助熔剂的作用。在焙烧温度为740℃、焙烧时间为30 min、浸出温度为50℃、浸出时间为40 min、水/焙烧样品质量比为10:1的条件下,锂的提取率最高达到93.87%。这项工作提供了一种从废旧锂离子电池的火法渣中提取锂的新体系。
  • Research Article

    Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates

    + Author Affiliations
    • The effective and low-temperature extraction of lithium from the pyrometallurgical slag of spent lithium-ion batteries (LIBs) remains a great challenge. Herein, potassium carbonate/sodium carbonate (K2CO3/Na2CO3), which could form a eutectic molten salt system at 720°C, was used as a roasting agent to extract lithium from pyrometallurgical slag. Lithium was successfully extracted from the slag by K2CO3/Na2CO3 roasting followed by water leaching. Theoretical calculation results indicate that the lengths of Li–O bonds increase after K+/Na+ adsorption, resulting in the easy release of Li+ from the LiAlSi2O6 lattice after roasting with K2CO3/Na2CO3. Thermogravimetry–differential scanning calorimetry results indicate that the eutectic phenomenon of K2CO3 and Na2CO3 could be observed at 720°C and that the reaction of the slag and eutectic molten salts occurs at temperatures above 720°C. X-ray diffraction results suggest that Li+ in the slag is exchanged by K+ in K2CO3 with the concurrent formation of KAlSiO4, while Na2CO3 mainly functions as a fluxing agent. The lithium extraction efficiency can reach 93.87% under the optimal conditions of a roasting temperature of 740°C, roasting time of 30 min, leaching temperature of 50°C, leaching time of 40 min, and water/roasted sample mass ratio of 10:1. This work provides a new system for extracting lithium from the pyrometallurgical slag of spent LIBs.
    • loading
    • Supplementary Information s12613-021-2366-3.docx
    • [1]
      J.F. Xiao, J. Li, and Z.M. Xu, Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environ. Sci. Technol., 54(2020), No. 1, p. 9. doi: 10.1021/acs.est.9b03725
      [2]
      E.S. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, and F. Wu, Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects, Chem. Rev., 120(2020), No. 14, p. 7020. doi: 10.1021/acs.chemrev.9b00535
      [3]
      Z. Sun, H. Cao, Y.P. Xiao, J. Sietsma, W. Jin, H. Agterhuis, and Y.X. Yang, Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 21. doi: 10.1021/acssuschemeng.6b00841
      [4]
      T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [5]
      E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez, and M. Colledani, Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments, J. Environ. Manage., 264(2020), art. No. 110500. doi: 10.1016/j.jenvman.2020.110500
      [6]
      A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11(2020), art. No. 1550. doi: 10.1038/s41467-020-15355-0
      [7]
      R.H. Wang, W.S. Cui, F.L. Chu, and F.X. Wu, Lithium metal anodes: Present and future, J. Energy Chem., 48(2020), p. 145. doi: 10.1016/j.jechem.2019.12.024
      [8]
      W.J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L.R. Johnson, P.G. Bruce, L.F. Nazar, Y.K. Sun, A.A. Frimer, M. Noked, S.A. Freunberger, and D. Aurbach, Lithium–oxygen batteries and related systems: Potential, status, and future, Chem. Rev., 120(2020), No. 14, p. 6626. doi: 10.1021/acs.chemrev.9b00609
      [9]
      L.Y. Sun, B.R. Liu, T. Wu, G.G. Wang, Q. Huang, Y.F. Su, and F. Wu, Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
      [10]
      X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, J. Hazard. Mater., 389(2020), art. No. 121887. doi: 10.1016/j.jhazmat.2019.121887
      [11]
      X.P. Fan, C.H. Song, X.F. Lu, Y. Shi, S.L. Yang, F.H. Zheng, Y.G. Huang, K. Liu, H.Q. Wang, and Q.Y. Li, Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2, J. Alloys Compd., 863(2021), art. No. 158775. doi: 10.1016/j.jallcom.2021.158775
      [12]
      S.X. Yan, C.H. Sun, T. Zhou, R.C. Gao, and H.S. Xie, Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives, Sep. Purif. Technol., 257(2021), art. No. 117930. doi: 10.1016/j.seppur.2020.117930
      [13]
      S.Y. Zhou, Y.J. Zhang, Q. Meng, P. Dong, Z.T. Fei, and Q.X. Li, Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration, J. Environ. Manage., 277(2021), art. No. 111426. doi: 10.1016/j.jenvman.2020.111426
      [14]
      S.Y. Lei, Y. Cao, X.F. Cao, W. Sun, Y.Q. Weng, and Y. Yang, Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10, Sep. Purif. Technol., 250(2020), art. No. 117258. doi: 10.1016/j.seppur.2020.117258
      [15]
      P. Xu, C.W. Liu, X.H. Zhang, X.H. Zheng, W.G. Lv, F. Rao, P.F. Yao, J.W. Wang, and Z. Sun, Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 5, p. 2271. doi: 10.1021/acssuschemeng.0c08213
      [16]
      Y.Y. Ma, J.J. Tang, R. Wanaldi, X.Y. Zhou, H. Wang, C.Y. Zhou, and J. Yang, A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching, J. Hazard. Mater., 402(2021), art. No. 123491. doi: 10.1016/j.jhazmat.2020.123491
      [17]
      T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources, 207(2012), p. 173. doi: 10.1016/j.jpowsour.2012.01.152
      [18]
      C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
      [19]
      J.F. Xiao, R.T. Gao, B. Niu, and Z.M. Xu, Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries, J. Hazard. Mater., 407(2021), art. No. 124704. doi: 10.1016/j.jhazmat.2020.124704
      [20]
      J.F. Xiao, B. Niu, Q.M. Song, L. Zhan, and Z.M. Xu, Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery, J. Hazard. Mater., 404(2021), art. No. 123947. doi: 10.1016/j.jhazmat.2020.123947
      [21]
      Y.Q. Tang, X. Qu, B.L. Zhang, Y. Zhao, H.W. Xie, J.J. Zhao, Z.Q. Ning, P.F. Xing, and H.Y. Yin, Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach, J. Clean. Prod., 279(2021), art. No. 123633. doi: 10.1016/j.jclepro.2020.123633
      [22]
      S.C. He and Z.H. Liu, Efficient process for recovery of waste LiMn2O4 cathode material: Low-temperature (NH4)2SO4 calcination mechanisms and water-leaching characteristics, Waste Manage., 108(2020), p. 28. doi: 10.1016/j.wasman.2020.04.030
      [23]
      H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives - A review, Hydrometallurgy, 189(2019), art. No. 105129. doi: 10.1016/j.hydromet.2019.105129
      [24]
      G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, J. Chen, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO−SiO2−Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 450. doi: 10.1016/S1003-6326(17)60051-7
      [25]
      S.W. Xiao, G.X. Ren, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO−SiO2−Al2O3 slag system, J. Sustain. Metall., 3(2017), No. 4, p. 703. doi: 10.1007/s40831-017-0131-7
      [26]
      J. Heulens, D. Van Horebeek, M. Quix, and S. Brouwer, Process for Smelting Lithium-Ion Batteries, United States Patent, Appl. 15/503416, 2017.
      [27]
      H. Dang, B.F. Wang, Z.D. Chang, X. Wu, J.G. Feng, H.L. Zhou, W.J. Li, and C.Y. Sun, Recycled lithium from simulated pyrometallurgical slag by chlorination roasting, ACS Sustainable Chem. Eng., 6(2018), No. 10, p. 13160. doi: 10.1021/acssuschemeng.8b02713
      [28]
      H. Su, J.Y. Ju, J. Zhang, A.F. Yi, Z. Lei, L.N. Wang, Z.W. Zhu, and T. Qi, Lithium recovery from lepidolite roasted with potassium compounds, Miner. Eng., 145(2020), art. No. 106087. doi: 10.1016/j.mineng.2019.106087
      [29]
      N. Li, J.H. Guo, Z.D. Chang, H. Dang, X. Zhao, S. Ali, W.J. Li, H.L. Zhou, and C.Y. Sun, Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting, RSC Adv., 9(2019), No. 41, p. 23908. doi: 10.1039/C9RA03754C
      [30]
      V.T. Luong, D.J. Kang, J.W. An, M.J. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p. 54. doi: 10.1016/j.hydromet.2013.01.015
      [31]
      L.L.D. Santos, R.M.D. Nascimento, and S.B.C. Pergher, Beta-spodumene: Na2CO3: NaCl system calcination: A kinetic study of the conversion to lithium salt, Chem. Eng. Res. Des., 147(2019), p. 338. doi: 10.1016/j.cherd.2019.05.019
      [32]
      H. Dang, N. Li, Z.D. Chang, B.F. Wang, Y.F. Zhan, X. Wu, W.B. Liu, S. Ali, H.D. Li, J.H. Guo, W.J. Li, H.L. Zhou, and C.Y. Sun, Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol., 233(2020), art. No. 116025. doi: 10.1016/j.seppur.2019.116025
      [33]
      L.I. Barbosa, J.A. González, and M.D.C. Ruiz, Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochim. Acta, 605(2015), p. 63. doi: 10.1016/j.tca.2015.02.009
      [34]
      T.T. Hien-Dinh, V.T. Luong, R. Gieré, and T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153(2015), p. 154. doi: 10.1016/j.hydromet.2015.03.002
      [35]
      X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [36]
      B. Yang, J.B. Zhou, W.W. Wang, C. Liu, D.L. Zhou, and L. Yang, Extraction and separation of tungsten and vanadium from spent V2O5−WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions, Colloids Surf. A, 601(2020), art. No. 124963. doi: 10.1016/j.colsurfa.2020.124963
      [37]
      C.S. Song, D.L. Zhou, L. Yang, J.B. Zhou, C. Liu, and Z.G. Chen, Recovery TiO2 and sodium titanate nanowires as Cd(II) adsorbent from waste V2O5−WO3/TiO2 selective catalytic reduction catalysts by Na2CO3–NaCl–KCl molten salt roasting method, J. Taiwan Inst. Chem. Eng., 88(2018), p. 226. doi: 10.1016/j.jtice.2018.04.006
      [38]
      Q.X. Yan, X.H. Li, Z.X. Wang, J.X. Wang, H.J. Guo, Q.Y. Hu, W.J. Peng, and X.F. Wu, Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), No. 7, p. 1753. doi: 10.1016/S1003-6326(11)61383-6
      [39]
      D. Cheret, and S. Santen, Battery Recycling, United States Patent, Appl. 1589121. B1, 2008.
      [40]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [41]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [42]
      I.H. Lee and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids, Phys. Rev. B, 56(1997), No. 12, p. 7197. doi: 10.1103/PhysRevB.56.7197

    Catalog


    • /

      返回文章
      返回