留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(9)

数据统计

分享

计量
  • 文章访问数:  1563
  • HTML全文浏览量:  471
  • PDF下载量:  78
  • 被引次数: 0
Huabao Yang, Yanfu Chai, Bin Jiang, Chao He, Junjie He, Qingshan Yang, and Ming Yuan, Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1343-1350. https://doi.org/10.1007/s12613-021-2370-7
Cite this article as:
Huabao Yang, Yanfu Chai, Bin Jiang, Chao He, Junjie He, Qingshan Yang, and Ming Yuan, Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1343-1350. https://doi.org/10.1007/s12613-021-2370-7
引用本文 PDF XML SpringerLink
研究论文

通过斜坡挤压实现Mg–3Al–1Zn合金板材力学性能的显著提升

  • 通讯作者:

    柴炎福    E-mail: 1073330140@qq.com

    蒋斌    E-mail: Jiangbinrong@cqu.edu.cn

文章亮点

  • (1) 斜坡挤压,其通过额外引入倾斜界面,产生更多的不对称变形和更强的累积应变。
  • (2) 斜坡挤压过程中法向应变的增加,致使晶粒细化,织构增强及组织均匀性的提高。
  • (3) 经斜坡挤压后的板材具有优异的强塑性表现,归因于晶粒细化与织构强化的综合作用。
  • 本文设计及采用了一种新型的挤压方法——斜坡挤压(SE),成功制备了AZ31镁合金板材。将其与采用常规挤压方法(CE)制备的AZ31板材,从组织、织构和室温力学性能等三方面进行综合比较。最终结果表明:由于在挤压前通过电火花线切割的方式成功在坯料中引入了倾斜界面,进而在挤压过程中会产生更多的不对称变形和沿板面方向更强的累积应变,故而经过斜坡挤压后的板材,其晶粒尺寸得到了显著的细化(平均晶粒尺寸从9.1 μm 下降至 7.7 和 5.6 μm),基面织构强度获得了明显提升(织构强度从11.5 mrd 增加至 19.8 mrd 和 25.4 mrd)。因此,经过斜坡挤压后的AZ31镁合金板材,其屈服强度(YS)和极限抗拉强度(UTS)均高对应常规挤压方法(CE)制备的AZ31板材,这主要是晶粒细化和织构强化的协同作用所导致。
  • Research Article

    Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion

    + Author Affiliations
    • A novel extrusion approach, entitled slope extrusion (SE), was employed to manufacture AZ31 (Mg–3Al–1Zn, wt%) alloy sheets. The microstructures, textures, and mechanical properties were investigated, compared with those of the AZ31 sheet fabricated by conventional extrusion (CE). Through the combination of finite element simulation and actual experiment, the ultimate results indicated that significant grain refinement (from 9.1 to 7.7 and 5.6 μm) and strong basal texture (from 12.6 to 17.6 and 19.5 mrd) were achieved by the SE process. The essence was associated with the additional introduced inclined interface in the process of SE, which could bring about more asymmetric deformation and stronger accumulated strain along the ND when compared with the process of CE. As a consequence, the SE sheets exhibited a higher yield strength (YS) and ultimate tensile strength (UTS) than the counterparts of the CE sheet, which was mainly assigned to the synergistic effects from grain refining and texture strengthening.
    • loading
    • [1]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [2]
      Q.S. Yang, Q.W. Dai, C. Lou, J.H. Dai, J.Y. Zhang, B. Jiang, and F.S. Pan, Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling, Prog. Nat. Sci. Mater. Int., 29(2019), No. 2, p. 231. doi: 10.1016/j.pnsc.2019.03.008
      [3]
      Q.H. Wang, S.Y. Chen, B. Jiang, Z.Y. Jin, L.Y. Zhao, J.J. He, D.F. Zhang, G.S. Huang, and F.S. Pan, Grain size dependence of annealing strengthening of an extruded Mg–Gd–Zn alloy subjected to pre-compression deformation, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.03.015
      [4]
      H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248. doi: 10.1016/j.jmst.2017.07.022
      [5]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [6]
      Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411. doi: 10.1016/j.jma.2020.08.005
      [7]
      Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, and F.S. Pan, Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
      [8]
      Q.H. Wang, B. Jiang, Y.F. Chai, B. Liu, S.X. Ma, J. Xu, and F.S. Pan, Tailoring the textures and mechanical properties of AZ31 alloy sheets using asymmetric composite extrusion, Mater. Sci. Eng. A, 673(2016), p. 606. doi: 10.1016/j.msea.2016.07.111
      [9]
      Q.S. Yang, B. Jiang, G.Y. Zhou, J.H. Dai, and F.S. Pan, Influence of an asymmetric shear deformation on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet, Mater. Sci. Eng. A, 590(2014), p. 440. doi: 10.1016/j.msea.2013.10.045
      [10]
      J. Xu, T.H. Yang, B. Jiang, J.F. Song, J.J. He, Q.H. Wang, Y.F. Chai, G.S. Huang, and F.S. Pan, Improved mechanical properties of Mg–3Al–1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution, J. Alloys Compd., 762(2018), p. 719. doi: 10.1016/j.jallcom.2018.05.083
      [11]
      H.T. Kang and T. Ostrom, Mechanical behavior of cast and forged magnesium alloys and their microstructures, Mater. Sci. Eng. A, 490(2008), No. 1-2, p. 52. doi: 10.1016/j.msea.2008.02.030
      [12]
      T.J. Lee and W.J. Kim, The significant effect of adding trace amounts of Ti on the high-temperature deformation behavior of fine-grained Mg–6Al–1Zn magnesium alloys, J. Alloys Compd., 617(2014), p. 352. doi: 10.1016/j.jallcom.2014.07.213
      [13]
      F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, and F.S. Pan, Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 14. doi: 10.1016/S1003-6326(15)63573-7
      [14]
      B. Song, R.L. Xin, G. Chen, X.Y. Zhang, and Q. Liu, Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling, Scripta Mater., 66(2012), No. 12, p. 1061. doi: 10.1016/j.scriptamat.2012.02.047
      [15]
      W.J. Kim, H.W. Lee, S.J. Yoo, and Y.B. Park, Texture and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloy sheets prepared by high-ratio differential speed rolling, Mater. Sci. Eng. A, 528(2011), No. 3, p. 874. doi: 10.1016/j.msea.2010.09.007
      [16]
      M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Achieving high strength in commercial Mg cast alloys through large strain rolling, Mater. Lett., 59(2005), No. 26, p. 3299. doi: 10.1016/j.matlet.2005.04.061
      [17]
      Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnes. Alloys, 7(2019), No. 4, p. 545. doi: 10.1016/j.jma.2019.09.007
      [18]
      H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Chen, C. He, L.J. Chai, Y.Z. Wang, and J.F. Nie, Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength, Acta Mater., 149(2018), p. 350. doi: 10.1016/j.actamat.2018.03.002
      [19]
      F.S. Pan, Q.H. Wang, B. Jiang, J.J. He, Y.F. Chai, and J. Xu, An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets, Mater. Sci. Eng. A, 655(2016), p. 339. doi: 10.1016/j.msea.2015.12.098
      [20]
      J.J. He, B. Jiang, H.M. Xie, Z.T. Jiang, B. Liu, and F.S. Pan, Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion, Mater. Sci. Eng. A, 675(2016), p. 76. doi: 10.1016/j.msea.2016.08.047
      [21]
      J. Xu, B. Jiang, J.F. Song, J.J. He, P. Gao, W.J. Liu, T.H. Yang, G.S. Huang, and F.S. Pan, Unusual texture formation in Mg–3Al–1Zn alloy sheets processed by slope extrusion, Mater. Sci. Eng. A, 732(2018), p. 1. doi: 10.1016/j.msea.2018.06.100
      [22]
      L.W. Lu, C.M. Liu, J. Zhao, W.B. Zeng, and Z.C. Wang, Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method, J. Alloys Compd., 628(2015), p. 130. doi: 10.1016/j.jallcom.2014.12.196
      [23]
      Q.S. Yang, B. Jiang, Y. Tian, W.J. Liu, and F.S. Pan, A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets, Mater. Lett., 100(2013), p. 29. doi: 10.1016/j.matlet.2013.02.118
      [24]
      D. Wu, W.N. Tang, R.S. Chen, and E.H. Han, Strength enhancement of Mg–3Gd–1Zn alloy by cold rolling, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 301. doi: 10.1016/S1003-6326(13)62461-9
      [25]
      Y.F. Chai, B. Jiang, J.F. Song, Q.H. Wang, H. Gao, B. Liu, G.S. Huang, D.F. Zhang, and F.S. Pan, Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg–Sn–Zn alloy through Ca addition, J. Alloys Compd., 782(2019), p. 1076. doi: 10.1016/j.jallcom.2018.12.109
      [26]
      T. Hu, W.L. Xiao, F. Wang, Y. Li, S.Y. Lyu, R.X. Zheng, and C.L. Ma, Improving tensile properties of Mg–Sn–Zn magnesium alloy sheets using pre-tension and ageing treatment, J. Alloys Compd., 735(2018), p. 1494. doi: 10.1016/j.jallcom.2017.11.220
      [27]
      W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature, J. Magnes. Alloys, 2(2014), No. 4, p. 299. doi: 10.1016/j.jma.2014.11.003
      [28]
      B.Q. Shi, R.S. Chen, and W. Ke, Solid solution strengthening in polycrystals of Mg–Sn binary alloys, J. Alloys Compd., 509(2011), No. 7, p. 3357. doi: 10.1016/j.jallcom.2010.12.065
      [29]
      S.X. Ding, W.T. Lee, C.P. Chang, L.W. Chang, and P.W. Kao, Improvement of strength of magnesium alloy processed by equal channel angular extrusion, Scripta. Mater., 59(2008), No. 9, p. 1006. doi: 10.1016/j.scriptamat.2008.07.007
      [30]
      J.B. Liu, K. Zhang, J.T. Han, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, and G.L. Shi, Microstructure and texture evolution of Mg–7Y–1Nd–0.5Zr alloy sheets with different rolling temperatures, Rare Met., 39(2020), No. 11, p. 1273. doi: 10.1007/s12598-016-0740-5
      [31]
      K. Liu, J.T. Liang, W.B. Du, S.B. Li, Z.H. Wang, Z.J. Yu, and J.X. Liu, Microstructure, mechanical properties and stretch formability of as-rolled Mg alloys with Zn and Er additions, Rare Met., 40(2021), No. 8, p. 2179. doi: 10.1007/s12598-020-01438-w
      [32]
      L.L. Chang, J.H. Cho, and S.K. Kang, Microstructure and mechanical properties of twin roll cast AM31 magnesium alloy sheet processed by differential speed rolling, Mater. Des., 34(2012), p. 746. doi: 10.1016/j.matdes.2011.06.060
      [33]
      J. Zhao, B. Jiang, Q.H. Wang, M. Yuan, Y.F. Chai, G.S. Huang, and F.S. Pan, Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1380. doi: doi.org/10.1007/s12613-021-2340-0
      [34]
      Q.W. Dai, D.F. Zhang, and X. Chen, On the anisotropic deformation of AZ31 Mg alloy under compression, Mater. Des., 32(2011), No. 10, p. 5004. doi: 10.1016/j.matdes.2011.06.017
      [35]
      Q.H. Wang, B. Jiang, A.T. Tang, S.X. Ma, Z.T. Jiang, Y.F. Chai, B. Liu, and F.S. Pan, Ameliorating the mechanical properties of magnesium alloy: Role of texture, Mater. Sci. Eng. A, 689(2017), p. 395. doi: 10.1016/j.msea.2017.02.067
      [36]
      C. He, Y.B. Zhang, M. Yuan, B. Jiang, Q.H. Wang, Y.F. Chai, G.S. Huang, D.F. Zhang, and F.S. Pan, Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1322. doi: doi.org/10.1007/s12613-021-2384-1
      [37]
      Q.H. Wang, B. Jiang, D.L. Chen, Z.Y. Jin, L.Y. Zhao, Q.S. Yang, G.S. Huang, and F.S. Pan, Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: A review, J. Mater. Sci., 56(2021), No. 23, p. 12965. doi: 10.1007/s10853-021-06067-x
      [38]
      J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnes. Alloys, (2022). DOI: 10.1016/j.jma.2022.04.001.

    Catalog


    • /

      返回文章
      返回