留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(18)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  892
  • HTML全文浏览量:  319
  • PDF下载量:  77
  • 被引次数: 0
Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 697-706. https://doi.org/10.1007/s12613-021-2371-6
Cite this article as:
Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 697-706. https://doi.org/10.1007/s12613-021-2371-6
引用本文 PDF XML SpringerLink
研究论文

显微组织特征对粉末热等静压TA15钛合金拉伸性能及断裂韧性的影响

  • 通讯作者:

    路新    E-mail: luxin@ustb.edu.cn

文章亮点

  • (1) 950°C以上热等静压得到的粉末TA15钛合金具有魏氏体组织,随着热等静压温度的升高,粒径迅速增大。
  • (2) 随着HIP温度的升高,合金的强度和延伸率呈现下降趋势,拉伸断裂模式由穿晶塑性断裂转变为包括晶间解理的混合断裂。
  • (3) 采用热等静压法得到的粉末TA15钛合金970°C断裂韧性为140 MPa·m1/2。板条簇中裂纹尖端前端通过裂纹偏转、分叉和塑性变形钝化显微组织,获得较高的断裂韧性。
  • 粉末热等静压(HIP)是实现高质量复杂薄壁钛合金构件近终形制造的有效解决方法,近年来引起了广泛的关注,但关于微观结构特征对粉末热等静压钛合金强化和增韧机制的报道很少。为此,采用热等静压方法制备粉末TA15钛合金,用于探索不同热等静压温度下的显微组织特征以及相应的拉伸性能和断裂韧性。结果表明,当热等静压温度低于950°C时,合金为由板条集束及板条团簇周围的细小等轴晶组成“网篮组织”。当HIP温度高于950°C时,显微组织逐渐转变为魏氏组织,同时晶粒尺寸显著增加。拉伸强度和伸长率分别从910°C试样的948 MPa和17.3%降低到970°C试样的861 MPa和10%。相应的拉伸断裂模式从穿晶塑性断裂转变为包括晶间解理的混合断裂。试样的断裂韧性从910°C试样的82.64 MPa·m1/2增加到970°C试样的140.18 MPa·m1/2。低于950°C的试样由于原始颗粒边界(PPB)的存在而容易形成孔洞,不利于增韧。由于Widmanstatten结构的裂纹偏转、裂纹分支和剪切塑性变形,950°C以上的试样具有较高的断裂韧性。该研究为粉末HIPed钛合金的研制提供了有效的参考。
  • Research Article

    Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing

    + Author Affiliations
    • Powder hot isostatic pressing (HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thin-walled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed (HIPed) titanium alloys. Therefore, TA15 powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950°C, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950°C, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910°C specimen to 861 MPa and 10% for the 970°C specimen. The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage. The fracture toughness of the specimens increases from 82.64 MPa·m1/2 for the 910°C specimen to 140.18 MPa·m1/2 for the 970°C specimen. Specimens below 950°C tend to form holes due to the prior particle boundaries (PPBs), which is not conducive to toughening. Specimens above 950°C have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.
    • loading
    • [1]
      L. Xu, R.P. Guo, Z.Y. Chen, Q. Jia, and Q.J. Wang, Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys, Chin. J. Mater. Res., 30(2016), No. 1, p. 23.
      [2]
      R. Baccino, F. Moret, F. Pellerin, D. Guichard, and G. Raisson, High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process, Mater. Des., 21(2000), No. 4, p. 345. doi: 10.1016/S0261-3069(99)00093-X
      [3]
      Y. Pan, X. Lu, C.C. Liu, T.L. Hui, C. Zhang, and X.H. Qu, Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering, Intermetallics, 125(2020), art. No. 106891. doi: 10.1016/j.intermet.2020.106891
      [4]
      X. Lu, Y. Pan, W.B. Li, M.D. Hayat, F. Yang, H. Singh, W.W. Song, X.H. Qu, Y. Xu, and P. Cao, High-performance Ti composites reinforced with in situ TiC derived from pyrolysis of polycarbosilane, Mater. Sci. Eng. A, 795(2020), art. No. 139924. doi: 10.1016/j.msea.2020.139924
      [5]
      X.H. Qu, G.Q. Zhang, and L. Zhang, Applications of powder metallurgy technologies in aero-engines, J. Aeronaut. Mater., 34(2014), No. 1, p. 1.
      [6]
      N.R. Moody, W.M. Garrison, J.E. Smugeresky, and J.E. Costa, The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys, Metall. Trans. A, 24(1993), No. 1, p. 161. doi: 10.1007/BF02669613
      [7]
      Y. Pan, W.B. Li, X. Lu, M.D. Hayat, L. Yin, W.W. Song, X.H. Qu, and P. Cao, Microstructure and tribological properties of titanium matrix composites reinforced with in situ synthesized TiC particles, Mater. Charact., 170(2020), art. No. 110633. doi: 10.1016/j.matchar.2020.110633
      [8]
      Y. Pan, W.B. Li, X. Lu, Y.C. Yang, Y.J. Liu, T.L. Hui, and X.H. Qu, Microstructure and mechanical properties of polycarbosilane in-situ reinforced titanium matrix composites, Rare Met. Mater. Eng., 49(2020), No. 4, p. 1345.
      [9]
      M.E. Launey and R.O. Ritchie, On the fracture toughness of advanced materials, Adv. Mater., 21(2009), No. 20, p. 2103. doi: 10.1002/adma.200803322
      [10]
      C.S. Tan, Y.D. Fan, Q.Y. Sun, and G.J. Zhang, Improvement of the crack propagation resistance in an α + β titanium alloy with a trimodal microstructure, Metals, 10(2020), No. 8, art. No. 1058. doi: 10.3390/met10081058
      [11]
      M. Niinomi and T. Kobayashi, Fracture characteristics analysis related to the microstructures in titanium alloys, Mater. Sci. Eng. A, 213(1996), No. 1-2, p. 16. doi: 10.1016/0921-5093(96)10239-2
      [12]
      F. Cao, Fatigue Behavior and Mechanisms in Powder Metallurgy Ti–6Al–4V Titanium Alloy [Dissertation], The University of Utah, Salt Lake City, 2016.
      [13]
      H. Singh, M. Hayat, H.Z. Zhang, R. Das, and P. Cao, Effect of TiB2 content on microstructure and properties of in situ Ti–TiB composites, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 915. doi: 10.1007/s12613-019-1797-6
      [14]
      L. Wang, Z.B. Lang, and H.P. Shi, Properties and forming process of prealloyed powder metallurgy Ti6Al4V alloy, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. s639.
      [15]
      A.A. Hidalgo, R. Frykholm, T. Ebel, and F. Pyczak, Powder metallurgy strategies to improve properties and processing of titanium alloys: A review, Adv. Eng. Mater., 19(2017), No. 6, art. No. 1600743. doi: 10.1002/adem.201600743
      [16]
      J.W. Xu, W.D. Zeng, D.D. Zhou, H.Y. Ma, W. Chen, and S.T. He, Influence of alpha/beta processing on fracture toughness for a two-phase titanium alloy, Mater. Sci. Eng. A, 731(2018), p. 85. doi: 10.1016/j.msea.2018.06.035
      [17]
      M. Niinomi and T. Kobayashi, Toughness and strength of microstructurally controlled titanium alloys, ISIJ Int., 31(1991), No. 8, p. 848. doi: 10.2355/isijinternational.31.848
      [18]
      X. Wen, M.P. Wan, C.W. Huang, and M. Lei, Strength and fracture toughness of TC21 alloy with multi-level lamellar microstructure, Mater. Sci. Eng. A, 740-741(2019), p. 121. doi: 10.1016/j.msea.2018.10.056
      [19]
      R.P. Guo, L. Xu, J. Wu, R. Yang, and B.Y. Zong, Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response, Mater. Sci. Eng. A, 639(2015), p. 327. doi: 10.1016/j.msea.2015.05.041
      [20]
      H.W. Wang, Z.J. Guo, and J. Wang, Study on microstructure and fracture toughness of TA15 alloy, Rare Met. Mater. Eng., 34(2005), Suppl. 3, p. 293.
      [21]
      H.E. Dève, A.G. Evens, and D.S. Shih, A high-toughness γ-titanium aluminide, Acta Metall. Mater., 40(1992), No. 6, p. 1259. doi: 10.1016/0956-7151(92)90425-E
      [22]
      K. Zhang, J. Mei, N. Wain, and X. Wu, Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti6Al4V hot-isostatically-pressed samples, Metall. Mater. Trans. A, 41(2010), No. 4, p. 1033. doi: 10.1007/s11661-009-0149-y
      [23]
      C. Cai, B. Song, P.J. Xue, Q.S. Wei, C.Z. Yan, and Y.S. Shi, A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties, Mater. Des., 106(2016), p. 371. doi: 10.1016/j.matdes.2016.05.092
      [24]
      R.P. Guo, L. Xu, Z.Y. Chen, Q.J. Wang, B.Y. Zong, and R. Yang, Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing, Mater. Sci. Eng. A, 706(2017), p. 57. doi: 10.1016/j.msea.2017.08.096
      [25]
      Q. Wang, Z. Wen, C. Jiang, B. Wang, and D.Q. Yi, Creep behaviour of TA15 alloy at elevated temperature, Mater. Sci. Eng. Powder Metall., 19(2014), No. 2, p. 171.
      [26]
      S.K. Li, S.X. Hui, W.J. Ye, Y. Yu, and B.Q. Xiong, Effects of microstructure on damage tolerance properties of TA15 ELI titanium alloy, Chin. J. Nonferrous Met., 17(2007), No. 7, p. 1119.
      [27]
      J.P. Hirth and F.H. Froes, Interrelations between fracture toughness and other mechanical properties in titanium alloys, Metall. Trans. A, 8(1977), No. 7, p. 1165. doi: 10.1007/BF02667402
      [28]
      F.W. Chen, Y.L. Gu, G.L. Xu, Y.W. Cui, H. Chang, and L. Zhou, Improved fracture toughness by microalloying of Fe in Ti6Al4V, Mater. Des., 185(2020), art. No. 108251. doi: 10.1016/j.matdes.2019.108251
      [29]
      Z.F. Shi, H.Z. Guo, J.W. Zhang, and J.N. Yin, Microstructure–fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure, Trans. Nonferrous Met. Soc. China, 28(2018), No. 12, p. 2440. doi: 10.1016/S1003-6326(18)64890-3
      [30]
      A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S.K. Kar, Microstructurefracture toughness correlation in an aircraft structural component alloy Ti5Al5V5Mo3Cr, Mater. Sci. Eng. A, 568(2013), p. 61. doi: 10.1016/j.msea.2013.01.017
      [31]
      N.L. Richards, Quantitative evaluation of fracture toughnessmicrostructural relationships in alphabeta titanium alloys, J. Mater. Eng. Perform., 13(2004), No. 2, p. 218. doi: 10.1361/10599490418424
      [32]
      X.H. Shi, W.D. Zeng, and Q.Y. Zhao, The effects of lamellar features on the fracture toughness of Ti-17 titanium alloy, Mater. Sci. Eng. A, 636(2015), p. 543. doi: 10.1016/j.msea.2015.04.021
      [33]
      T. Horiya, H.G. Suzuki, and T. Kishi, Effect of microstructure and impurity content on microcrack initiation and extension properties of Ti6Al4V alloys, Tetsu-to-Hagane, 75(1989), No. 12, p. 2250. doi: 10.2355/tetsutohagane1955.75.12_2250
      [34]
      Y. Kawabe and S. Muneki, Strengthening and toughening of titanium alloys, ISIJ Int., 31(1991), No. 8, p. 785. doi: 10.2355/isijinternational.31.785
      [35]
      N.L. Richards, Prediction of crack deflection in titanium alloys with a platelet microstructure, J. Mater. Eng. Perform., 14(2005), No. 1, p. 91. doi: 10.1361/10599490522176
      [36]
      Q.L. Zhang and X.W. Li, Effect of structure on fatigue properties and fracture toughness for TA15 titanium alloy, J. Mater. Eng., 2007, No. 7, p. 3.

    Catalog


    • /

      返回文章
      返回