留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1633
  • HTML全文浏览量:  545
  • PDF下载量:  90
  • 被引次数: 0
Zhiyu Lu, Jiahuan He, Mengchen Song, Yan Zhang, Fuying Wu, Jiaguang Zheng, Liuting Zhang, and Lixin Chen, Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 44-53. https://doi.org/10.1007/s12613-021-2372-5
Cite this article as:
Zhiyu Lu, Jiahuan He, Mengchen Song, Yan Zhang, Fuying Wu, Jiaguang Zheng, Liuting Zhang, and Lixin Chen, Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 44-53. https://doi.org/10.1007/s12613-021-2372-5
引用本文 PDF XML SpringerLink
研究论文封面文章

子弹状钒基MOFs作为高活性催化剂促进MgH2的储氢性能

    * 共同第一作者
  • 通讯作者:

    张刘挺    E-mail: zhanglt89@just.edu.cn

文章亮点

  • (1) 通过简单的水热反应和高温煅烧成功制备了子弹状的MOFs-V。
  • (2) 经20次循环后,MOFs-V掺杂的MgH2体系具有良好的储氢容量保持率。
  • (3) 过渡金属与MOFs的结合有效增强了催化剂的活性,为设计和合成改善MgH2储氢性能的高效催化剂提供了思路。
  • 氢化镁(MgH2)具备较高的脱氢温度和缓慢的脱氢动力学性能,这严重限制了其在储氢领域的实际应用。本研究成功合成了一种基于金属钒的有机框架材料(MOFs-V),并通过球磨技术掺杂到MgH2来提高其储氢性能。微结构分析表明煅烧后的MOFs-V具有子弹状结构。当加入7wt% MOFs-V后,升温放氢测试表明MgH2的初始放氢温度由340.0降低至190.6°C。在300°C的恒温测试中,MgH2+7wt%MOFs-V复合材料在5 min内释放了6.4wt%的H2。对于升温吸氢测试,在3.2 MPa氢气压力下,含7wt% MOFs-V的样品60°C便开始吸氢。MgH2+7wt%MOFs-V的放/吸氢表观活化能分别为(98.4 ± 2.9)和(30.3 ± 2.1) kJ·mol−1,远低于MgH2的(157.5 ± 3.3)和(78.2 ± 3.4) kJ·mol−1。此外,MgH2+7wt%MOFs-V复合材料具有良好的循环性能,储氢容量经过20个恒温循环后基本保持不变。X射线衍射(XRD)和X射线光电子能谱(XPS)分析证实吸放氢过程中生成了具有高催化活性的金属钒,从而显著改善了Mg/MgH2体系的储氢性能。
  • Research Article

    Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2

    + Author Affiliations
    • The practical application of magnesium hydride (MgH2) was seriously limited by its high desorption temperature and slow desorption kinetics. In this study, a bullet-like catalyst based on vanadium related MOFs (MOFs-V) was successfully synthesized and doped with MgH2 by ball milling to improve its hydrogen storage performance. Microstructure analysis demonstrated that the as-synthesized MOFs was consisted of V2O3 with a bullet-like structure. After adding 7wt% MOFs-V, the initial desorption temperature of MgH2 was reduced from 340.0 to 190.6°C. Besides, the MgH2+7wt%MOFs-V composite released 6.4wt% H2 within 5 min at 300°C. Hydrogen uptake was started at 60°C under 3200 kPa hydrogen pressure for the 7wt% MOFs-V containing sample. The desorption and absorption apparent activity energies of the MgH2+7wt%MOFs-V composite were calculated to be (98.4 ± 2.9) and (30.3 ± 2.1) kJ·mol−1, much lower than (157.5 ± 3.3) and (78.2 ± 3.4) kJ·mol−1 for the as-prepared MgH2. The MgH2+7wt%MOFs-V composite exhibited superior cyclic property. During the 20 cycles isothermal dehydrogenation and hydrogenation experiments, the hydrogen storage capacity stayed almost unchanged. X-ray diffraction (XRD) and X-ray photoelectron spectrometer (XPS) measurements confirmed the presence of metallic vanadium in the MgH2+7wt%MOFs-V composite, which served as catalytic unit to markedly improve the hydrogen storage properties of Mg/MgH2 system.
    • loading
    • [1]
      L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, 414(2001), No. 6861, p. 353. doi: 10.1038/35104634
      [2]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [3]
      M. Chen, Y.H. Pu, Z.Y. Li, et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2, Nano Res., 13(2020), No. 8, p. 2063. doi: 10.1007/s12274-020-2808-7
      [4]
      F.M. Nyahuma, L.T. Zhang, M.C. Song, et al., Significantly improved hydrogen storage behaviors of MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1788. doi: 10.1007/s12613-021-2303-5
      [5]
      X.S. Liu, H.Z. Liu, N. Qiu, et al., Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials, Rare Met., 40(2021), No. 4, p. 1003. doi: 10.1007/s12598-020-01425-1
      [6]
      J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183. doi: 10.1007/s12613-017-1509-z
      [7]
      M. Ismail, M.S. Yahya, N.A. Sazelee, et al., The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8(2020), No. 3, p. 832. doi: 10.1016/j.jma.2020.04.002
      [8]
      Q.Q. Kong, H.H. Zhang, Z.L. Yuan, et al., Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2, ACS Sustainable Chem. Eng., 8(2020), No. 12, p. 4755. doi: 10.1021/acssuschemeng.9b06936
      [9]
      Q. Li, K.C. Chou, Q. Lin, L.J. Jiang, and F. Zhan, Hydrogen absorption and desorption kinetics of Ag–Mg–Ni alloys, Int. J. Hydrogen Energy, 29(2004), No. 8, p. 843. doi: 10.1016/j.ijhydene.2003.10.002
      [10]
      Z.Y. Li, S.L. Li, Z.M. Yuan, Y.H. Zhang, and Y. Qi, Microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95−xNix (x = 5, 10, 15) alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 5, p. 1057. doi: 10.1016/S1003-6326(19)65014-4
      [11]
      X.P. Ren, F.F. Zhang, Q.M. Guo, H.L. Hou, and Y.Q. Wang, Hydrogen absorption behavior of TA15 alloy, Int. J. Miner. Metall. Mater., 18(2011), No. 2, p. 210. doi: 10.1007/s12613-011-0424-y
      [12]
      M.J. Liu, S.C. Zhao, X.Z. Xiao, et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities, Nano Energy, 61(2019), p. 540. doi: 10.1016/j.nanoen.2019.04.094
      [13]
      Y.F. Liu, H.F. Du, X. Zhang, et al., Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride, Chem. Commun., 52(2016), No. 4, p. 705. doi: 10.1039/C5CC08801A
      [14]
      C. Lu, J.X. Zou, X.Y. Shi, X.Q. Zeng, and W.J. Ding, Synthesis and hydrogen storage properties of core–shell structured binary Mg@Ti and ternary Mg@Ti@Ni composites, Int. J. Hydrogen Energy, 42(2017), No. 4, p. 2239. doi: 10.1016/j.ijhydene.2016.10.088
      [15]
      X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101. doi: 10.1016/j.cej.2021.130101
      [16]
      L.Z. Ouyang, F. Liu, H. Wang, et al., Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 832(2020), art. No. 154865. doi: 10.1016/j.jallcom.2020.154865
      [17]
      J.T. Hu, J.J. Zhang, H.Y. Xiao, et al., A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb, Int. J. Hydrogen Energy, 46(2021), No. 40, p. 21050. doi: 10.1016/j.ijhydene.2021.03.200
      [18]
      Y.H. Zhang, W. Zhang, Z.M. Yuan, et al., Hydrogen storage performances of as-milled REMg11Ni (RE = Y, Sm) alloys catalyzed by MoS2, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1828. doi: 10.1016/S1003-6326(18)64827-7
      [19]
      W.L. Mi, Z.S. Liu, T. Kimura, A. Kamegawa, and H.L. Wang, Crystal structure and hydrogen storage properties of (La, Ce)Ni5−xMx (M = Al, Fe, or Co) alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 108. doi: 10.1007/s12613-019-1714-z
      [20]
      C.Q. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178. doi: 10.1016/j.jmst.2020.01.063
      [21]
      T.Z. Si, Y. Cao, Q.G. Zhang, et al., Enhanced hydrogen storage properties of a Mg–Ag alloy with solid dissolution of indium: A comparative study, J. Mater. Chem. A, 3(2015), No. 16, p. 8581. doi: 10.1039/C5TA00292C
      [22]
      M.G. Verón, H. Troiani, and F.C. Gennari, Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties, Carbon, 49(2011), No. 7, p. 2413. doi: 10.1016/j.carbon.2011.02.008
      [23]
      B. Wang, D.Y. Ong, Y.H. Li, et al., Stereo-controlled anti-hydromagnesiation of aryl alkynes by magnesium hydrides, Chem. Sci., 11(2020), No. 20, p. 5267. doi: 10.1039/D0SC01773F
      [24]
      K. Wang, X. Zhang, Y.F. Liu, et al., Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2, Chem. Eng. J., 406(2021), art. No. 126831. doi: 10.1016/j.cej.2020.126831
      [25]
      C.C. Xu, X.Z. Xiao, J. Shao, et al., Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 791. doi: 10.1016/S1003-6326(16)64169-9
      [26]
      Y. Wang, C.H. An, Y.J. Wang, et al., Core–shell Co@C catalyzed MgH2: Enhanced dehydrogenation properties and its catalytic mechanism, J. Mater. Chem. A, 2(2014), No. 38, p. 16285. doi: 10.1039/C4TA02759K
      [27]
      Z.Y. Wang, X.L. Zhang, Z.H. Ren, et al., In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2, J. Mater. Chem. A, 7(2019), No. 23, p. 14244. doi: 10.1039/C9TA03665B
      [28]
      L.T. Zhang, Z.L. Cai, Z.D. Yao, et al., A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626. doi: 10.1039/C9TA00120D
      [29]
      N.H. Yan, X. Lu, Z.Y. Lu, et al., Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, J. Magnes. Alloys, 2021. DOI: 10.1016/j.jma.2021.03.014
      [30]
      M.C. Song, L.T.Zhang, J.G. Zheng, Z.D. Yu, and S.N. Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1464. doi: 10.1007/s12613-021-2393-0
      [31]
      G. Liang, J. Huot, S. Boily, A. van Neste, and R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292(1999), No. 1-2, p. 247. doi: 10.1016/S0925-8388(99)00442-9
      [32]
      G. Liang, J. Huot, S. Boily, A. van Neste, and R. Schulz, Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite, J. Alloys Compd., 291(1999), No. 1-2, p. 295. doi: 10.1016/S0925-8388(99)00268-6
      [33]
      P. Rizo-Acosta, F. Cuevas, and M. Latroche, Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium, J. Mater. Chem. A, 7(2019), No. 40, p. 23064. doi: 10.1039/C9TA05440E
      [34]
      M.O.T. da Conceição, M.C. Brum, and D.S. dos Santos, The effect of V, VCl3 and VC catalysts on the MgH2 hydrogen sorption properties, J. Alloys Compd., 586(2014), p. S101. doi: 10.1016/j.jallcom.2012.12.131
      [35]
      Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
      [36]
      L.T. Zhang, Z.L. Cai, X.Q. Zhu, et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2, J. Alloys Compd., 805(2019), p. 295. doi: 10.1016/j.jallcom.2019.07.085
      [37]
      L.T. Zhang, L.X. Chen, X.L. Fan, et al., Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes, J. Mater. Chem. A, 5(2017), No. 13, p. 6178. doi: 10.1039/C7TA00566K
      [38]
      Z.L. Ma, J.G. Zhang, Y.F. Zhu, et al., Facile synthesis of carbon supported nano-Ni particles with superior catalytic effect on hydrogen storage kinetics of MgH2, ACS Appl. Energy Mater., 1(2018), No. 3, p. 1158. doi: 10.1021/acsaem.7b00266
      [39]
      Y.Q. Wang, Z.Q. Lan, H. Fu, H.Z. Liu, and J. Guo, Synergistic catalytic effects of ZIF-67 and transition metals (Ni, Cu, Pd, and Nb) on hydrogen storage properties of magnesium, Int. J. Hydrogen Energy, 45(2020), No. 24, p. 13376. doi: 10.1016/j.ijhydene.2020.03.036
      [40]
      Z.Y. Wang, Z.H. Ren, N. Jian, et al., Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2, J. Mater. Chem. A, 6(2018), No. 33, p. 16177. doi: 10.1039/C8TA05437A
      [41]
      H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem., 29(1957), No. 11, p. 1702. doi: 10.1021/ac60131a045
      [42]
      P. Wang, Z.H. Tian, Z.X. Wang, et al., Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst, Int. J. Hydrogen Energy, 46(2021), No. 53, p. 27107. doi: 10.1016/j.ijhydene.2021.05.172
      [43]
      T. Huang, X. Huang, C. Hu, et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy, 19(2021), art. No. 100613. doi: 10.1016/j.mtener.2020.100613
      [44]
      N.A. Sazelee, N.H. Idris, M.F. Md Din, et al., LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results Phys., 16(2020), art. No. 102844. doi: 10.1016/j.rinp.2019.102844
      [45]
      Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold, Chem. Eng. J., 406(2021), art. No. 126790. doi: 10.1016/j.cej.2020.126790
      [46]
      S. Hu, H.H. Zhang, Z.L. Yuan, et al., Ultrathin K2Ti8O17 nanobelts for improving the hydrogen storage kinetics of MgH2, J. Alloys Compd., 881(2021), art. No. 160571. doi: 10.1016/j.jallcom.2021.160571
      [47]
      Y. Wang, L. Li, C.H. An, et al., Facile synthesis of TiN decorated graphene and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride, Nanoscale, 6(2014), No. 12, art. No. 6684. doi: 10.1039/c4nr00474d
      [48]
      M.S. Yahya and M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem., 28(2019), p. 46. doi: 10.1016/j.jechem.2017.10.020
      [49]
      M. Avrami, Kinetics of phase change. I general theory, J. Chem. Phys., 7(1939), No. 12, p. 1103. doi: 10.1063/1.1750380
      [50]
      M.J. Liu, X.Z. Xiao, S.C. Zhao, et al., Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride, J. Mater. Chem. A, 7(2019), No. 10, p. 5277. doi: 10.1039/C8TA12431K
      [51]
      W. Zhu, S. Panda, C. Lu, et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2, ACS Appl. Mater. Inter., 12(2020), No. 45, p. 50333. doi: 10.1021/acsami.0c12767
      [52]
      L.C. Zhang, K. Wang, Y.F. Liu, et al., Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2, Nano Res., 14(2021), No. 1, p. 148. doi: 10.1007/s12274-020-3058-4
      [53]
      H.Z. Liu, C.L. Lu, X.C. Wang, et al., Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2, ACS Appl. Mater. Interfaces, 13(2021), No. 11, p. 13235. doi: 10.1021/acsami.0c23150
      [54]
      X. Huang, X.Z. Xiao, W. Zhang, et al., Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride, Phys. Chem. Chem. Phys., 19(2017), No. 5, p. 4019. doi: 10.1039/C6CP07852D
      [55]
      X. Zhang, Z.H. Leng, M.X. Gao, et al., Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J. Power Sources, 398(2018), p. 183. doi: 10.1016/j.jpowsour.2018.07.072
      [56]
      M. Zhang, X.Z. Xiao, J.F. Mao, et al., Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride, Mater. Today Energy, 12(2019), p. 146. doi: 10.1016/j.mtener.2019.01.001
      [57]
      P. Wang, Z.X. Wang, Z.H. Tian, et al., Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: The catalytic effect of in situ formed MgS and Mg2NiH4 phases, Renewable Energy, 160(2020), p. 409. doi: 10.1016/j.renene.2020.07.014
      [58]
      N.S. Norberg, T.S. Arthur, S.J. Fredrick, and A.L. Prieto, Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution, J. Am. Chem. Soc., 133(2011), No. 28, p. 10679. doi: 10.1021/ja201791y
      [59]
      W. Liu and K.F. Aguey-Zinsou, Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method, J. Mater. Chem. A, 2(2014), No. 25, art. No. 9718. doi: 10.1039/c4ta01108b
      [60]
      T. Liu, H.L. Shen, Y. Liu, et al., Scaled-up synthesis of nanostructured Mg-based compounds and their hydrogen storage properties, J. Power Sources, 227(2013), p. 86. doi: 10.1016/j.jpowsour.2012.11.011
      [61]
      T.P. Huang, X. Huang, C.Z. Hu, et al., MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2, Chem. Eng. J., 421(2021), art. No. 127851. doi: 10.1016/j.cej.2020.127851

    Catalog


    • /

      返回文章
      返回