留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  5767
  • HTML全文浏览量:  1549
  • PDF下载量:  205
  • 被引次数: 0
Qifeng Guo, Xun Xi, Shangtong Yang,  and Meifeng Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 626-634. https://doi.org/10.1007/s12613-021-2374-3
Cite this article as:
Qifeng Guo, Xun Xi, Shangtong Yang,  and Meifeng Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 626-634. https://doi.org/10.1007/s12613-021-2374-3
引用本文 PDF XML SpringerLink
特约综述

中国金属矿山实现碳达峰与碳中和目标的科技战略

  • 通讯作者:

    席迅    E-mail: xun.xi@strath.ac.uk

    蔡美峰    E-mail: caimeifeng@ustb.edu.cn

文章亮点

  • (1) 分析了金属矿开采碳排放现状与国际矿业巨头碳排放战略。
  • (2) 梳理了我国金属矿碳减排关键前沿技术。
  • (3) 提出了面向2060年碳中和目标我国的金属矿开采科技战略。
  • 工业革命以来,与人类活动相关的温室气体排放导致了明显的气候变化。我国力争2030年前实现碳达峰,2060年前实现碳中和。本文综述分析了我国金属矿实现碳达峰、碳中和目标的科技战略。本文分析了全球金属矿开采相关的碳排放量与碳排放强度,梳理了中国金属矿开采现状趋势与碳排放情况,总结了实现我国金属矿山碳减排和碳封存的关键前沿技术,提出了我国金属矿开采实现碳中和的科技战略。研究结果表明,由于开采深度的增加和矿石品位的降低,未来金属矿开采碳减排面临巨大挑战。一些国际矿业巨头已开展了碳排放管理,做出了碳减排计划,并力争2050年前实现碳中和。提高开采效率和使用可再生能源替代化石燃料,是金属矿开采碳减排的核心思路。通过植被固碳,绿色矿山建设可显著减少碳排放。深部矿产和地热共采技术、废弃矿井地热开发技术,能够为矿山提供清洁能源,有利于实现金属矿碳中和目标。矿山充填体和尾矿固碳技术,可以安全永久地封存二氧化碳,有望使金属矿山实现净零排放甚至负碳排放。
  • Invited Review

    Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines

    + Author Affiliations
    • Greenhouse gas (GHG) emissions related to human activities have significantly caused climate change since the Industrial Revolution. China aims to achieve its carbon emission peak before 2030 and carbon neutrality before 2060. Accordingly, this paper reviews and discusses technical strategies to achieve the “dual carbon” targets in China’s metal mines. First, global carbon emissions and emission intensities from metal mining industries are analyzed. The metal mining status and carbon emissions in China are then examined. Furthermore, advanced technologies for carbon mitigation and carbon sequestration in metal mines are reviewed. Finally, a technical roadmap for achieving carbon neutrality in China’s metal mines is proposed. Findings show that some international mining giants have already achieved their carbon reduction targets and planned to achieve carbon neutrality by 2050. Moreover, improving mining efficiency by developing advanced technologies and replacing fossil fuel with renewable energy are two key approaches in reducing GHG emissions. Green mines can significantly benefit from the carbon neutrality process for metal mines through the carbon absorption of reclamation vegetations. Geothermal energy extraction from operating and abandoned metal mines is a promising technology for providing clean energy and contributing to the carbon neutrality target of China’s metal mines. Carbon sequestration in mine backfills and tailings through mineral carbonation has the potential to permanently and safely store carbon dioxide, which can eventually make the metal mining industry carbon neutral or even carbon negative.
    • loading
    • [1]
      IPCC, Global Warming of 1.5°C, Intergovernmental Panel on Climate Change, Geneva, 2018, p. 5.
      [2]
      L. Dong, G.Y. Miao, and W.G. Wen, China's carbon neutrality policy: Objectives, impacts and paths, East Asian Policy, 13(2021), No. 1, p. 5. doi: 10.1142/S1793930521000015
      [3]
      X. Chen and B.Q. Lin, Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China, Energy Policy, 157(2021), art. No. 112510. doi: 10.1016/j.enpol.2021.112510
      [4]
      S. Northey, N. Haque, and G. Mudd, Using sustainability reporting to assess the environmental footprint of copper mining, J. Cleaner Prod., 40(2013), p. 118. doi: 10.1016/j.jclepro.2012.09.027
      [5]
      Q.S. Li, The view of technological innovation in coal industry under the vision of carbon neutralization, Int. J. Coal Sci. Technol., 8(2021), p. 1197. doi: 10.1007/s40789-021-00458-w
      [6]
      B.Y. Yang, Z.K. Bai, and J.J. Zhang, Environmental impact of mining-associated carbon emissions and analysis of cleaner production strategies in China, Environ. Sci. Pollut. Res. Int., 28(2021), No. 11, p. 13649. doi: 10.1007/s11356-020-11551-z
      [7]
      M. Azadi, S.A. Northey, S.H. Ali, and M. Edraki, Transparency on greenhouse gas emissions from mining to enable climate change mitigation, Nat. Geosci., 13(2020), No. 2, p. 100. doi: 10.1038/s41561-020-0531-3
      [8]
      F.M. Liu, Q.X. Cai, S.Z. Chen, and W. Zhou, A comparison of the energy consumption and carbon emissions for different modes of transportation in open-cut coal mines, Int. J. Min. Sci. Technol., 25(2015), No. 2, p. 261. doi: 10.1016/j.ijmst.2015.02.015
      [9]
      D.G. Carmichael, B.J. Bartlett, and A.S. Kaboli, Surface mining operations: Coincident unit cost and emissions, Int. J. Min. Reclam. Environ., 28(2014), No. 1, p. 47. doi: 10.1080/17480930.2013.772699
      [10]
      L.M. Zhang, S.L. Zhang, H.P. Hou, Y. Zhang, and B.G. Xu, Evaluation model and empirical study of carbon emission reduction effect from mining land reclamation, China Min. Mag., 24(2015), No. 11, p. 65.
      [11]
      E. Martens, H. Prommer, R. Sprocati, J. Sun, X.W. Dai, R. Crane, J. Jamieson, P.O. Tong, M. Rolle, and A. Fourie, Toward a more sustainable mining future with electrokinetic in situ leaching, Sci. Adv., 7(2021), No. 18, p. 10. doi: 10.1126/sciadv.abf9971
      [12]
      A.X. Wu, H.J. Wang, S.H. Yin, and Z.E. Ruan, Conception of in-situ fluidisation mining for deep metal mines, J. Min. Sci. Technol., 6(2021), No. 3, p. 255.
      [13]
      H.P. Xie, Z.M. Hou, F. Gao, L. Zhou, and Y.N. Gao, A new technology of pumped-storage power in underground coal mine: Principles, present situation and future, J. China Coal Soc., 40(2015), No. 5, p. 965.
      [14]
      L. Yuan, Y.D. Jiang, K. Wang, Y.X. Zhao, X.J. Hao, and C. Xu, Precision exploitation and utilisation of closed/abandoned mine resources in China, J. China Coal Soc., 43(2018), No. 1, p. 14.
      [15]
      J.J. Li and M. Hitch, Ultra-fine grinding and mechanical activation of mine waste rock using a planetary mill for mineral carbonation, Int. J. Miner. Process., 158(2017), p. 18. doi: 10.1016/j.minpro.2016.11.016
      [16]
      A.L. Shao, Integrated Underground Mining and Dressing System for Mineral Resources Development, Metallurgical industry press, Beijing, 2012.
      [17]
      T. Bao, J. Meldrum, C. Green, S. Vitton, Z. Liu, and K. Bird, Geothermal energy recovery from deep flooded copper mines for heating, Energy Convers. Manag., 183(2019), p. 604. doi: 10.1016/j.enconman.2019.01.007
      [18]
      M.F. Cai and E.T. Brown, Challenges in the mining and utilization of deep mineral resources, Engineering, 3(2017), No. 4, p. 432. doi: 10.1016/J.ENG.2017.04.027
      [19]
      M.F. Cai, D.L. Xue, and F.H. Ren, Current status and development strategy of metal mines, Chin. J. Eng., 41(2019), No. 4, p. 417.
      [20]
      L.Y. Liu, H.G. Ji, X.F. Lü, T. Wang, S. Zhi, F. Pei, and D.L. Quan, Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
      [21]
      P. Nuss and M.J. Eckelman, Life cycle assessment of metals: A scientific synthesis, PLoS One, 9(2014), No. 7, art. No. e101298. doi: 10.1371/journal.pone.0101298
      [22]
      World Gold Council, Gold and Climate Change : An Introduction, World Gold Council, London, 2018, p. 12.
      [23]
      Anglo American, Sustainability Report 2020, Anglo American plc, London, 2021, p. 44.
      [24]
      BHP, Climate Change Report 2020, Broken Hill Proprietary Company, Melbourne, 2021, p. 23.
      [25]
      Glencore, Pathway to Net-zero: Climate Change Report 2020, Glencore, Baar, 2021, p. 35.
      [26]
      Rio Tinto, Our Approach to Climate Change 2020, Rio Tinto Group, London, 2021, p. 9.
      [27]
      Vale, Intergrated Report 2020, Vale, Rio de Janeiro, 2021, p. 52.
      [28]
      D.S. Gu and X.B. Li, Modern Mining Science and Technology for Metal Mineral Resources, Metallurgical Industry Press, Beijing 2006, p. 10.
      [29]
      M.F. Cai, W.H. Tan, F.H Ren, and Q.F Guo, Strategic Research on Innovative Technology System for Deep Mining of Metal Mines, Science Press, Beijing, 2018, p. 22.
      [30]
      S.D. Ren, H.H. Xia, M.J. Li, Time-space evolution of carbon emissions with regard to Chinese provincial mining industry — Based on panel data between year of 2005 and 2015, Nat. Resour. Econ. China, 32(2019), No. 11, p. 41.
      [31]
      Y.L. Shan, D.B. Guan, H.R. Zheng, J.M. Ou, Y. Li, J. Meng, Z.F. Mi, Z. Liu, and Q. Zhang, China CO2 emission accounts 1997–2015, Sci. Data, 5(2018), No. 1, art. No. 170201. doi: 10.1038/sdata.2017.201
      [32]
      T. Zhu, R.N. Wang, N.J. Yi, W.F. Niu, L.F. Wang, and Z.Y. Xue, CO2 and SO2 emission characteristics of the whole process industry chain of coal processing and utilization in China, Int. J. Coal Sci. Technol., 7(2020), No. 1, p. 19. doi: 10.1007/s40789-020-00297-1
      [33]
      S.H. Yin, W. Chen, X.L. Fan, J.M. Liu, and L.B. Wu, Review and prospects of bioleaching in the Chinese mining industry, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1397. doi: 10.1007/s12613-020-2233-7
      [34]
      X. Zhao, A. Fourie, and C.C. Qi, Mechanics and safety issues in tailing-based backfill: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1165. doi: 10.1007/s12613-020-2004-5
      [35]
      C.C. Qi, Big data management in the mining industry, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 131. doi: 10.1007/s12613-019-1937-z
      [36]
      A.X. Wu, S.H. Yin, B.H. Yang, J. Wang, and G.Z. Qiu, Study on preferential flow in dump leaching of low-grade ores, Hydrometallurgy, 87(2007), No. 3-4, p. 124. doi: 10.1016/j.hydromet.2007.03.001
      [37]
      R.S. Yang, C.X. Ding, L.Y. Yang, and C. Chen, Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions, Tunnelling Underground Space Technol., 74(2018), p. 145. doi: 10.1016/j.tust.2018.01.017
      [38]
      R.S. Yang, C.X. Ding, Y.L. Li, L.Y. Yang, and Y. Zhao, Crack propagation behavior in slit charge blasting under high static stress conditions, Int. J. Rock Mech. Min. Sci., 119(2019), p. 117. doi: 10.1016/j.ijrmms.2019.05.002
      [39]
      J.G. Li and K. Zhan, Intelligent mining technology for an underground metal mine based on unmanned equipment, Engineering, 4(2018), No. 3, p. 381. doi: 10.1016/j.eng.2018.05.013
      [40]
      M.F. Cai, J.C. Li, and S.H. Hao, Study on optimising route of truck-belt conveyor semi-continuous hauling system, Met. Mine, 2004, No. 8, p. 6.
      [41]
      H.L Xu and R.Y. Jiang, Key technology and design practice of integration of underground mining and beneficiation engineering, Met. Mine, 2016, No. 484, p. 50.
      [42]
      M. Preene and P.L. Younger, Can you take the heat? — Geothermal energy in mining, Min. Technol., 123(2014), No. 2, p. 107. doi: 10.1179/1743286314Y.0000000058
      [43]
      M.C. He, P.Y. Guo, X.Q. Chen, L. Meng, and Y.Y. Zhu, Research on characteristics of high-temperature and control of heat-harm of Sanhejian coal mine, Chin. J. Rock Mech. Eng., 29(2010), No. S1, p. 2593.
      [44]
      J. Zhao, C.A. Tang, and S.J. Wang, Excavation based enhanced geothermal system (EGS-E): Introduction to a new concept, Geomech. Geophys. Geo Energy Geo Resour., 6(2019), No. 1, p. 1.
      [45]
      T.J. Li, C.A. Tang, J. Rutqvist, and M.S. Hu, TOUGH-RFPA: Coupled thermal-hydraulic-mechanical Rock Failure Process Analysis with application to deep geothermal wells, Int. J. Rock Mech. Min. Sci., 142(2021), art. No. 104726. doi: 10.1016/j.ijrmms.2021.104726
      [46]
      F.C. Kang and C.A Tang, Overview of enhanced geothermal system (EGS) based on excavation in China, Earth Sci. Front., 27(2020), No. 1, p. 185.
      [47]
      L. Liu, J. Xin, B. Zhang, X.Y. Zhang, M. Wang, H.F. Qiu, and L.Chen, Basic theories and applied exploration of functional backfill in mines, J. China Coal Soc., 43(2017), No. 7, p. 1811.
      [48]
      A. Zang, G. Zimmermann, H. Hofmann, O. Stephansson, K.B. Min, and K.Y. Kim, How to reduce fluid-injection-induced seismicity, Rock Mech. Rock Eng., 52(2019), No. 2, p. 475. doi: 10.1007/s00603-018-1467-4
      [49]
      X. Xi, S.T. Yang, C.I. McDermott, Z.K. Shipton, A. Fraser-Harris, and K. Edlmann, Modelling rock fracture induced by hydraulic pulses, Rock Mech. Rock Eng., 54(2021), No. 8, p. 3977. doi: 10.1007/s00603-021-02477-0
      [50]
      H.P. Xie, M.Z. Gao, F. Gao, R. Zhang, Y. Ju, H. Xu, and Y.W. Wang, Strategic conceptualisation and key technology for the transformation and upgrading of shut-down coal mines, J. China Coal Soc., 42(2017), No. 6, p. 1355.
      [51]
      F. Liu and S.Z. Li, Discussion on the new development and utilisation of underground space resources of transitional coal mines, J. China Coal Soc., 42(2017), No. 9, p. 2205.
      [52]
      E. Peralta Ramos, K. Breede, and G. Falcone, Geothermal heat recovery from abandoned mines: A systematic review of projects implemented worldwide and a methodology for screening new projects, Environ. Earth Sci., 73(2015), No. 11, p. 6783. doi: 10.1007/s12665-015-4285-y
      [53]
      G. Farr, J. Busby, L. Wyatt, J. Crooks, D.I. Schofield, and A. Holden, The temperature of Britain's coalfields, Q. J. Eng. Geol. Hydrogeol., 54(2021), No. 3, art. No. qjegh2020.
      [54]
      I.M. Jiskani, Q.X. Cai, W. Zhou, and S.A. Ali Shah, Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production, Resour. Policy, 71(2021), art. No. 102007. doi: 10.1016/j.resourpol.2021.102007
      [55]
      K.H. Erb, T. Kastner, C. Plutzar, A.L.S. Bais, N. Carvalhais, T. Fetzel, S. Gingrich, H. Haberl, C. Lauk, M. Niedertscheider, J. Pongratz, M. Thurner, and S. Luyssaert, Unexpectedly large impact of forest management and grazing on global vegetation biomass, Nature, 553(2018), No. 7686, p. 73. doi: 10.1038/nature25138
      [56]
      Y.H. Zhang, P. Hu, N. Zhang, F.X. Chen, X.K. Wang, and J.C. Zhou, Comprehensive use of iron ore wastes and tailings and green mine construction, Resour. Ind., 21(2019), No. 3, p. 1.
      [57]
      Narisu, J.F. Wang, H.Y. Gao, Y.H. Bao, and Yushan, Monitor the vegetation coverage change of Baiyunebo mining area based on remote sensing and gis technologies, J. Inn. Mong. Agric. Univ. Nat. Sci. Ed., 39(2018), No. 2, p. 65.
      [58]
      X. Ye, S.L. Shi, Y.Y. Gu, K. Zhang, H. Wang, and S.Y. Li, Study on ecological influence and ecological restoration effect of mine in Zijin Mountain, Environ. Ecol., 1(2019), No. 1, p. 84.
      [59]
      J.J. Zhao, M.X. Lu, H.H. Gu, X.T. Yuan, and F.P. Li, Study on the effect of ecological restoration in mining area based on the change of vegetation coverage, Min. Res. Dev., 38(2018), No. 10, p. 115.
      [60]
      B. Wang, Ecological Environment Change of Typical Mining Area in Gansu Research—A Case Study of Jinchang Nickel Ore Area [Dissertation], Lanzhou Jiaotong University, 2018.
      [61]
      Z.Y. Kang, Y. Suo, and H.B. Huang, Countermeasures of geological environment recovery in Anshan iron mine, Met. Mine, 2010, No. 2, p. 159.
      [62]
      X.H. Liu, Vegetation restoration technology of mine abandoned land in Tongling city, Anhui For. Sci. Technol., 39(2013), No. 3, p. 63.
      [63]
      J.J. Li, M. Hitch, I. Power, and Y.Y. Pan, Integrated mineral carbonation of ultramafic mine deposits—A review, Minerals, 8(2018), No. 4, art. No. 147. doi: 10.3390/min8040147
      [64]
      D.Y.C. Leung, G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renewable Sustainable Energy Rev., 39(2014), p. 426. doi: 10.1016/j.rser.2014.07.093
      [65]
      W. Seifritz, CO2 disposal by means of silicates, Nature, 345(1990), No. 6275, art. No. 486.
      [66]
      A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43(2014), No. 23, p. 8049. doi: 10.1039/C4CS00035H
      [67]
      H.P. Xie, L.Z. Xie, Y.F. Wang, J.H. Zhu, B. Liang, and Y. Ju, CCU: A more feasible and economic strategy than CCS for reducing CO2 emissions, J. Sichuan Univ. (Eng. Sci. Ed.), 44(2012), p. 1.
      [68]
      F.M. Xi, S.J. Davis, P. Ciais, D. Crawford-Brown, D. Guan, C. Pade, T. Shi, M. Syddall, J. Lv, L.Z. Ji, L.F. Bing, J.Y. Wang, W. Wei, K.H. Yang, B. Lagerblad, I. Galan, C. Andrade, Y. Zhang, and Z. Liu, Substantial global carbon uptake by cement carbonation, Nat. Geosci., 9(2016), No. 12, p. 880. doi: 10.1038/ngeo2840
      [69]
      H.C. Chen, N. Khalili, and J.J. Li, Development of stabilized Ca-based CO2 sorbents supported by fly ash, Chem. Eng. J., 345(2018), p. 312. doi: 10.1016/j.cej.2018.03.162
      [70]
      M.F. Bertos, S.J.R. Simons, C.D. Hills, and P.J. Carey, A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, J. Hazard. Mater., 112(2004), No. 3, p. 193. doi: 10.1016/j.jhazmat.2004.04.019
      [71]
      S.A. Wilson, G.M. Dipple, I.M. Power, J.M. Thom, R.G. Anderson, M. Raudsepp, J.E. Gabites, and G. Southam, Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton creek and cassiar chrysotile deposits, Canada, Econ. Geol., 104(2009), No. 1, p. 95. doi: 10.2113/gsecongeo.104.1.95
      [72]
      B.P. McGrail, H.T. Schaef, A.M. Ho, Y.J. Chien, J.J. Dooley, and C.L. Davidson, Potential for carbon dioxide sequestration in flood basalts, J. Geophys. Res. Solid Earth, 111(2006), No. B12, art. No. B12201.

    Catalog


    • /

      返回文章
      返回