留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(14)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1606
  • HTML全文浏览量:  626
  • PDF下载量:  81
  • 被引次数: 0
Jiazhi An, Zhaozhen Cai,  and Miaoyong Zhu, Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2172-2180. https://doi.org/10.1007/s12613-021-2375-2
Cite this article as:
Jiazhi An, Zhaozhen Cai,  and Miaoyong Zhu, Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2172-2180. https://doi.org/10.1007/s12613-021-2375-2
引用本文 PDF XML SpringerLink
研究论文

钛对包晶钢铸态粗大柱状奥氏体晶粒细化的影响

  • 通讯作者:

    蔡兆镇    E-mail: caizz@smm.neu.edu.cn

    朱苗勇    E-mail: myzhu@mail.neu.edu.cn

文章亮点

  • (1) 设计了定向凝固实验装置模拟实际连铸坯表层组织生长状况。
  • (2) 系统的研究了凝固过程微米级及纳米级碳氮化钛的析出规律。
  • (3) 总结并提出了凝固过程Ti的碳氮化物对粗大柱状奥氏体的细化作用。
  • 包晶微合金钢具有高强、高韧、易焊接等优良性能,广泛应用于石油化工、交通运输、海洋工程等领域。然而,包晶钢在连铸过程中常于铸坯表层生成粗大柱状奥氏体晶粒,是致使铸坯矫直过程形成角部横裂纹等质量缺陷的重要因素之一。本文采用快速定向凝固装置实验研究了Ti元素对包晶钢凝固过程铸态粗大柱状奥氏体细化的影响,并利用扫描与透射电镜分析了Ti的析出物在包晶钢凝固过程中的尺寸与分布规律。其研究结果表明,在包晶钢凝固过程中其奥氏体组织主要由粗大柱状奥氏体与细小柱状奥氏体组成,随着Ti含量的增加,粗大柱状奥氏体区域逐渐减小。当Ti含量增加至0.09wt%时,粗大柱状奥氏体完全消失。在凝固过程中,微米级别碳氮化钛将最先在液相中形成,从而降低细小柱状奥氏体向粗大柱状奥氏体不连续生长的转变温度。随着转变温度的降低,纳米级碳氮化钛将在奥氏体相中析出并钉扎晶界,从而细化包晶钢铸态奥氏体晶粒。
  • Research Article

    Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel

    + Author Affiliations
    • The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth of surface and subsurface austenite in continuously cast slabs. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to analyze the size and distribution of Ti(C,N) precipitates during solidification. Based on these results, the pinning pressure of Ti(C,N) precipitates on the growth of coarse columnar grains (CCGs) was studied. The results show that the austenite microstructure of as-cast peritectic carbon steel is mainly composed of the regions of CCGs and fine columnar grains (FCGs). Increasing the content of titanium reduces the region and the short axis of the CCGs. When the content of titanium is 0.09wt%, there is no CCG region. Dispersed microscale particles will firstly form in the liquid, which will decrease the transition temperature from FCGs to CCGs. The chain-like nanoscale Ti(C,N) will precipitate with the decrease of the transition temperature. Furthermore, calculations shows that the refinement of the CCGs is caused by the pinning effect of Ti(C,N) precipitates.
    • loading
    • [1]
      M. Ohno, S. Tsuchiya, and K. Matsuura, Microstructural features and formation processes of as-cast austenite grain structures in hypoperitectic carbon steels, ISIJ Int., 55(2015), No. 11, p. 2374. doi: 10.2355/isijinternational.ISIJINT-2015-240
      [2]
      H. T. Tasi, H. Yin, M. Lowry and S. Morales, Analysis of transverse corner cracks on slabs and countermeasures, Iron Steel Technol., 3(2006), p. 23.
      [3]
      B. Mintz and J.M. Arrowsmith, Hot-ductility behaviour of C–Mn–Nb–Al steels and its relationship to crack propagation during the straightening of continuously cast strand, Met. Technol., 6(1979), No. 1, p. 24. doi: 10.1179/030716979803276471
      [4]
      H. Yasuda, T. Suga, K. Ichida, T. Narumi, and K. Morishita, In situ observation of austenite coarsening induced by massive-like transformation during solidification in Fe–C alloys, IOP Conf. Ser.: Mater. Sci. Eng., 861(2020), No. 1, art. No. 012051. doi: 10.1088/1757-899X/861/1/012051
      [5]
      G. Azizi, B.G. Thomas, and M. Asle Zaeem, Review of peritectic solidification mechanisms and effects in steel casting, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1875. doi: 10.1007/s11663-020-01942-5
      [6]
      N.S. POttore, C.I. Garcia, and A.J. DeArdo, Interrupted and isothermal solidification studies of low and medium carbon steels, Metall. Trans. A, 22(1991), No. 8, p. 1871. doi: 10.1007/BF02646512
      [7]
      T. Maruyama, K. Matsuura, M. Kudoh, and Y. Itoh, Peritectic transformation and austenite grain formation for hyper-peritectic carbon steel, Tetsu-to-Hagane, 85(1999), No. 8, p. 585. doi: 10.2355/tetsutohagane1955.85.8_585
      [8]
      N. Yoshida, O. Umezawa, and K. Nagai, Analysis on refinement of columnar γ grain by phosphorus in continuously cast 0.1 mass% carbon steel, ISIJ Int., 44(2004), No. 3, p. 547. doi: 10.2355/isijinternational.44.547
      [9]
      S. Tsuchiya, M. Ohno, K. Matsuura, and K. Isobe, Formation mechanism of coarse columnar γ grains in as-cast hyperperitectic carbon steels, Acta Mater., 59(2011), No. 9, p. 3334. doi: 10.1016/j.actamat.2011.02.007
      [10]
      M. Ohno, S. Tsuchiya, and K. Matsuura, Formation conditions of coarse columnar austenite grain structure in peritectic carbon steels by the discontinuous grain growth mechanism, Acta Mater., 59(2011), No. 14, p. 5700. doi: 10.1016/j.actamat.2011.05.045
      [11]
      S. Kencana, M. Ohno, K. Matsuura, and K. Isobe, Effects of Al and P additions on as-cast austenite grain structure in 0.2 mass% carbon steel, ISIJ Int., 50(2010), No. 12, p. 1965. doi: 10.2355/isijinternational.50.1965
      [12]
      S. Tsuchiya, M. Ohno, K. Matsuura, and K. Isobe, Effects of Cr addition on coarse columnar austenite structure in as-cast 0.2 mass% carbon steel, ISIJ Int., 50(2010), No. 12, p. 1959. doi: 10.2355/isijinternational.50.1959
      [13]
      Y.L. Wang, Y.L. Chen, and W. Yu, Effect of Cr/Mn segregation on pearlite–martensite banded structure of high carbon bearing steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 665. doi: 10.1007/s12613-020-2035-y
      [14]
      S.F. Medina, M. Chapa, P. Valles, A. Quispe, and M.I. Vega, Influence of Ti and N contents on austenite grain control and precipitate size in structural steels, ISIJ Int., 39(1999), No. 9, p. 930. doi: 10.2355/isijinternational.39.930
      [15]
      X.L. Wan, K.M. Wu, G. Huang, R. Wei, and L. Cheng, In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 878. doi: 10.1007/s12613-014-0984-8
      [16]
      B. Feng, T. Chandra, and D.P. Dunne, Effect of alloy nitride particle size distribution on austenite grain coarsening in Ti and Ti–Nb bearing HSLA steels, Mater. Forum, 13(1989), No. 2, p. 139.
      [17]
      R. Vaz Penna, L.N. Bartlett, and R. O’Malley, Influence of TiN additions on the microstructure of a lightweight Fe–Mn–Al steel, Int. J. Metalcast., 14(2020), No. 2, p. 342. doi: 10.1007/s40962-019-00373-6
      [18]
      A. Graux, S. Cazottes, D. de Castro, D. San Martín, C. Capdevila, J.M. Cabrera, S. Molas, S. Schreiber, D. Mirković, F. Danoix, M. Bugnet, D. Fabrègue, and M. Perez, Precipitation and grain growth modelling in Ti–Nb microalloyed steels, Materialia, 5(2019), art. No. 100233. doi: 10.1016/j.mtla.2019.100233
      [19]
      R. Wei, C.J. Shang, and K.M. Wu, Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 737. doi: 10.1007/s12613-010-0382-9
      [20]
      M. Ohno and K. Matsuura, Refinement of as-cast austenite microstructure in S45C steel by titanium addition, ISIJ Int., 48(2008), No. 10, p. 1373. doi: 10.2355/isijinternational.48.1373
      [21]
      S. Tsuchiya, M. Ohno, and K. Matsuura, Transition of solidification mode and the as-cast γ grain structure in hyperperitectic carbon steels, Acta Mater., 60(2012), No. 6-7, p. 2927. doi: 10.1016/j.actamat.2012.01.056
      [22]
      Y. Maehara, K. Yasumoto, Y. Sugitani, and K. Gunji, Effect of carbon on hot ductility of as-cast low alloy steels, ISIJ Int., 25(1985), No. 10, p. 1045. doi: 10.2355/isijinternational1966.25.1045
      [23]
      L.T. Gui, M.J. Long, H.H. Zhang, D.F. Chen, S. Liu, Q.Z. Wang, and H.M. Duan, Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model, J. Mater. Res. Technol., 9(2020), No. 3, p. 5499. doi: 10.1016/j.jmrt.2020.03.075
      [24]
      Y. Huang, W.N. Liu, A.M. Zhao, J.K. Han, Z.G. Wang, and H.X. Yin, Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 412. doi: 10.1007/s12613-020-2045-9
      [25]
      T. Kato, Y. Ito, M. Kawamoto, A. Yamanaka, and T. Watanabe, Prevention of slab surface transverse cracking by microstructure control, ISIJ Int., 43(2003), No. 11, p. 1742. doi: 10.2355/isijinternational.43.1742
      [26]
      I. Andersen and Ø. Grong, Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—I. Normal grain growth, Acta Metall. Mater., 43(1995), No. 7, p. 2673. doi: 10.1016/0956-7151(94)00488-4
      [27]
      G.E. Pellissier and S.M. Purdy, Stereology and Quantitative Metallography, American Society for Testing and Materals, Easton, 1972.

    Catalog


    • /

      返回文章
      返回