留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(12)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1119
  • HTML全文浏览量:  361
  • PDF下载量:  49
  • 被引次数: 0
Qian Zhang, Shuming Wen, Qicheng Feng,  and Han Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1150-1160. https://doi.org/10.1007/s12613-021-2379-y
Cite this article as:
Qian Zhang, Shuming Wen, Qicheng Feng,  and Han Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1150-1160. https://doi.org/10.1007/s12613-021-2379-y
引用本文 PDF XML SpringerLink
研究论文

磷酸铵强化硫化蓝铜矿及其对浮选的影响

  • 通讯作者:

    丰奇成    E-mail: fqckmust@163.com

文章亮点

  • (1) 蓝铜矿表面经(NH4)3PO4预处理后,其浮选回收率明显增加。
  • (2) (NH4)3PO4增强了蓝铜矿表面的硫化效果,促进了矿物表面硫化产物的形成。
  • (3) (NH4)3PO4的添加导致蓝铜矿表面更多的Cu(II)组分被还原为Cu(I)组分。
  • 蓝铜矿是一种重要的氧化铜矿物,采用常规的硫化–黄药浮选法回收蓝铜矿时浮选效果不理想。本研究通过微浮选试验、飞行时间二次离子质谱(ToF-SIMS)、X射线光电子能谱(XPS)、Zeta电位、接触角、傅里叶变换红外(FT-IR)光谱和紫外–可见光(UV–Vis)光谱检测研究了(NH4)3PO4和Na2S对蓝铜矿表面的强化硫化效果。微浮选试验表明,(NH4)3PO4和Na2S同时加入可提高蓝铜矿的可浮性;ToF-SIMS和XPS分析表明,与蓝铜矿–Na2S体系相比,(NH4)3PO4和Na2S处理后的蓝铜矿表面硫组分含量较高,Cu(I)组分含量也得到增加;硫化前采用(NH4)3PO4预处理后,蓝铜矿表面Zeta电位呈负偏移,且矿物表面的接触角增大,即(NH4)3PO4的加入增强了蓝铜矿表面的硫化,促进了黄药的吸附;FT-IR和UV–Vis分析表明,在蓝铜矿浮选过程中,(NH4)3PO4的加入增加了矿物表面黄药的有效吸附量,降低了黄药的使用量。因此,(NH4)3PO4有利于蓝铜矿的硫化浮选。
  • Research Article

    Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation

    + Author Affiliations
    • Although azurite is one of the most important copper oxide minerals, the recovery of this mineral via sulfidization–xanthate flotation is typically unsatisfactory. The present work demonstrated the enhanced sulfidization of azurite surfaces using ammonia phosphate ((NH4)3PO4) together with Na2S, based on micro-flotation experiments, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, contact angle measurements, Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. Micro-flotation experiments showed that the floatability of azurite was increased following the simultaneous addition of (NH4)3PO4 and Na2S. ToF-SIMS and XPS analyses demonstrated the formation of a high content of S species on the azurite surface and an increase in the number of Cu(I) species after exposure to (NH4)3PO4 and Na2S, compared with the azurite–Na2S system. The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased with the addition of (NH4)3PO4 prior to Na2S. These results indicate that treatment with (NH4)3PO4 enhances the sulfidization of azurite surfaces, which in turn promotes xanthate attachment. FT-IR and UV–Vis analyses confirmed that the addition of (NH4)3PO4 increased the adsorption of xanthate with reducing the consumption of xanthate during the azurite flotation process. Thus, (NH4)3PO4 has a beneficial effect on the sulfidization flotation of azurite.
    • loading
    • [1]
      S.H. Yin, W. Chen, X.L. Fan, J.M. Liu, and L.B. Wu, Review and prospects of bioleaching in the Chinese mining industry, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1397. doi: 10.1007/s12613-020-2233-7
      [2]
      E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475. doi: 10.1007/s12613-020-2176-z
      [3]
      H.Y. Xie, Y.H. Liu, B. Rao, J.Z. Wu, L.K. Gao, L.Z. Chen, and X.S. Tian, Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper–lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
      [4]
      L.T. Tijsseling, Q. Dehaine, G.K. Rollinson, and H.J. Glass, Flotation of mixed oxide sulphide copper–cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors, Miner. Eng., 138(2019), p. 246. doi: 10.1016/j.mineng.2019.04.022
      [5]
      X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
      [6]
      G.R. Wang, H.Y. Yang, Y.Y. Liu, L.L. Tong, and A. Auwalu, Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 292. doi: 10.1007/s12613-019-1856-z
      [7]
      W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
      [8]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant, Int. J. Min. Sci. Techno., 31(2021), No. 6, p. 1117. doi: 10.1016/j.ijmst.2021.11.001
      [9]
      J.P. Cai, D.W. Liu, P.L. Shen, X.L. Zhang, K.W. Song, X.D. Jia, and C. Su, Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation, Miner. Eng., 169(2021), art. No. 106956. doi: 10.1016/j.mineng.2021.106956
      [10]
      J.L. Li, S.Y. Liu, D.W. Liu, R.Z. Liu, Z.C. Liu, X.D. Jia, and T.C. Chang, Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid–liquid reaction that yields PbCO3/PbS core–shell particles, Miner. Eng., 153(2020), art. No. 106400. doi: 10.1016/j.mineng.2020.106400
      [11]
      C. Liu, G.L. Zhu, S.X. Song, and H.Q. Li, Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite, Colloids Surf. A, 555(2018), p. 679. doi: 10.1016/j.colsurfa.2018.07.045
      [12]
      Z. Li, M. Chen, P.W. Huang, Q.W. Zhang, and S.X. Song, Effect of grinding with sulfur on surface properties and floatability of three nonferrous metal oxides, Trans. Nonferrous Met. Soc. China, 27(2017), No. 11, p. 2474. doi: 10.1016/S1003-6326(17)60274-7
      [13]
      X.B. Min, C.Y. Yuan, Y.J. Liang, L.Y. Chai, and Y. Ke, Metal recovery from sludge through the combination of hydrothermal sulfidation and flotation, Procedia Environ. Sci., 16(2012), p. 401. doi: 10.1016/j.proenv.2012.10.056
      [14]
      D.D. Wu, Y.B. Mao, J.S. Deng, and S.M. Wen, Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study, Appl. Surf. Sci., 410(2017), p. 126. doi: 10.1016/j.apsusc.2017.03.058
      [15]
      D.Q. Xing, Y.Q. Huang, C.S. Lin, W.R. Zuo, and R.D. Deng, Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification, Sep. Purif. Technol., 269(2021), art. No. 118769. doi: 10.1016/j.seppur.2021.118769
      [16]
      R.Z. Liu, D.W. Liu, J.L. Li, S.Y. Liu, Z.C. Liu, L.Q. Gao, X.D. Jia, and S.F. Ao, Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, ToF-SIMS and FESEM investigation, Colloids Surf. A, 595(2020), art. No. 124508. doi: 10.1016/j.colsurfa.2020.124508
      [17]
      Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Copper sulfide species formed on malachite surfaces in relation to flotation, J. Ind. Eng. Chem., 48(2017), p. 125. doi: 10.1016/j.jiec.2016.12.029
      [18]
      Z.Y. Lan, Z.N. Lai, Y.X. Zheng, J.F. Lv, J. Pang, and J.L. Ning, Thermochemical modification for the surface of smithsonite with sulfur and its flotation response, Miner. Eng., 150(2020), art. No. 106271. doi: 10.1016/j.mineng.2020.106271
      [19]
      Q.C. Feng, W.J. Zhao, and S.M. Wen, Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation, J. Alloys Compd., 744(2018), p. 301. doi: 10.1016/j.jallcom.2018.02.056
      [20]
      P.L. Shen, D.W. Liu, X.H. Xu, X.D. Jia, X.L. Zhang, K.W. Song, and J.P. Cai, Effects of ammonium phosphate on the formation of crystal copper sulfide on chrysocolla surfaces and its response to flotation, Miner. Eng., 155(2020), art. No. 106300. doi: 10.1016/j.mineng.2020.106300
      [21]
      S.J. Bai, C.L. Li, X.Y. Fu, Z. Ding, and S.M. Wen, Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance, Miner. Eng., 125(2018), p. 190. doi: 10.1016/j.mineng.2018.03.040
      [22]
      X. Bai, J. Liu, S.M. Wen, Y. Wang, and Y.L. Lin, Effect of ammonium salt on the stability of surface sulfide layer of smithsonite and its flotation performance, Appl. Surf. Sci., 514(2020), art. No. 145851. doi: 10.1016/j.apsusc.2020.145851
      [23]
      P.L. Shen, D.W. Liu, X.L. Zhang, X.D. Jia, K.W. Song, and D. Liu, Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite, Miner. Eng., 137(2019), p. 43. doi: 10.1016/j.mineng.2019.03.015
      [24]
      Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823. doi: 10.1016/j.apsusc.2017.12.113
      [25]
      Q. Zhang, Y.J. Wang, Q.C. Feng, S.M. Wen, Y.W. Zhou, W.L. Nie, and J.B. Liu, Identification of sulfidization products formed on azurite surfaces and its correlations with xanthate adsorption and flotation, Appl. Surf. Sci., 511(2020), art. No. 145594. doi: 10.1016/j.apsusc.2020.145594
      [26]
      Q. Zhang, S.M. Wen, Q.C. Feng, and S. Zhang, Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism, Sep. Purif. Technol., 242(2020), art. No. 116760. doi: 10.1016/j.seppur.2020.116760
      [27]
      Q.Y. Sheng, W.Z. Yin, B. Yang, S.H. Cao, H.R. Sun, Y.Q. Ma, and K.Q. Chen, Improving surface sulfidization of azurite with ammonium bisulfate and its contribution to sulfidization flotation, Miner. Eng., 171(2021), art. No. 107072. doi: 10.1016/j.mineng.2021.107072
      [28]
      M. Finšgar, Surface analysis by gas cluster ion beam XPS and ToF-SIMS tandem MS of 2-mercaptobenzoxazole corrosion inhibitor for brass, Corros. Sci., 182(2021), art. No. 109269. doi: 10.1016/j.corsci.2021.109269
      [29]
      H. Lai, J.S. Deng, Q.J. Liu, S.M. Wen, and Q. Song, Surface chemistry investigation of froth flotation products of lead–zinc sulfide ore using ToF-SIMS and multivariate analysis, Sep. Purif. Technol., 254(2021), art. No. 117655. doi: 10.1016/j.seppur.2020.117655
      [30]
      H. Lai, Q.J. Liu, J.S. Deng, S.M. Wen, and Z.L. Liu, Surface chemistry study of Cu–Pb sulfide ore using ToF-SIMS and multivariate analysis, Appl. Surf. Sci., 518(2020), art. No. 146270. doi: 10.1016/j.apsusc.2020.146270
      [31]
      S.J. Bai, P. Yu, Z. Ding, Y.X. Bi, C.L. Li, D.D. Wu, and S.M. Wen, New insights into lead ions activation for microfine particle ilmenite flotation in sulfuric acid system: Visual MINTEQ models, XPS, and ToF-SIMS studies, Miner. Eng., 155(2020), art. No. 106473. doi: 10.1016/j.mineng.2020.106473
      [32]
      V.S.G. Krishna and M.G. Mahesha, XPS analysis of ZnS0.4Se0.6 thin films deposited by spray pyrolysis technique, J. Electron Spectrosc. Relat. Phenom., 249(2021), art. No. 147072. doi: 10.1016/j.elspec.2021.147072
      [33]
      B.V. Crist, The XPS library website: A resource for the XPS community including - The XPS library of information, XPS spectra-base having >70,000 monochromatic XPS spectra, and spectral data processor (SDP) v8.0 software, J. Electron Spectrosc. Relat. Phenom., 248(2021), art. No. 147046. doi: 10.1016/j.elspec.2021.147046
      [34]
      Y. Kubo, Y. Sonohara, and S. Uemura, Changes in the chemical state of metallic Cr during deposition on a polyimide substrate: Full soft XPS and ToF-SIMS depth profiles, Appl. Surf. Sci., 553(2021), art. No. 149437. doi: 10.1016/j.apsusc.2021.149437
      [35]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance, Miner. Eng., 169(2021), art. No. 106982. doi: 10.1016/j.mineng.2021.106982
      [36]
      H.Q. Peng, D. Wu, and M. Abdelmonem, Flotation performances and surface properties of chalcopyrite with xanthate collector added before and after grinding, Results Phys., 7(2017), p. 3567. doi: 10.1016/j.rinp.2017.09.028
      [37]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Effect of ferric ion on cuprite surface properties and sulfidization flotation, Sep. Purif. Technol., 278(2021), art. No. 119573. doi: 10.1016/j.seppur.2021.119573
      [38]
      C.L. Li, S.J. Bai, Z. Ding, P. Yu, and S.M. Wen, Visual MINTEQ model, ToF-SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption, J. Taiwan Inst. Chem. Eng., 96(2019), p. 53. doi: 10.1016/j.jtice.2018.11.021
      [39]
      J.J. Luo, Q. Niu, M.C. Jin, Y.N. Cao, L.R. Ye, and R.P. Du, Study on the effects of oxygen-containing functional groups on Hg0 adsorption in simulated flue gas by XAFS and XPS analysis, J. Hazard. Mater., 376(2019), p. 21. doi: 10.1016/j.jhazmat.2019.05.012
      [40]
      S. Krainer and U. Hirn, Contact angle measurement on porous substrates: Effect of liquid absorption and drop size, Colloids Surf. A, 619(2021), art. No. 126503. doi: 10.1016/j.colsurfa.2021.126503
      [41]
      G. Huminic, A. Huminic, F. Dumitrache, C. Fleaca, and I. Morjan, Experimental study on contact angle of water based Si–C nanofluid, J. Mol. Liq., 332(2021), art. No. 115833. doi: 10.1016/j.molliq.2021.115833
      [42]
      Y.J. Yang, L.Y. Zhang, Y.L. Zhu, G.T. Wei, Z.M. Li, and R.L. Mo, Three-dimensional photoelectrocatalytic degradation of ethyl xanthate catalyzed by activated bentonite-based bismuth ferrites particle electrodes: Influencing factors, kinetics, and mechanism, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105559. doi: 10.1016/j.jece.2021.105559
      [43]
      G.C. Zhu, J.F. Liu, J. Yin, Z.W. Li, B.Z. Ren, Y.J. Sun, P. Wan, and Y.S. Liu, Functionalized polyacrylamide by xanthate for Cr(VI) removal from aqueous solution, Chem. Eng. J., 288(2016), p. 390. doi: 10.1016/j.cej.2015.12.043
      [44]
      Z.L. Li, Y. Kong, and Y.Y. Ge, Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution, Chem. Eng. J., 270(2015), p. 229. doi: 10.1016/j.cej.2015.01.123

    Catalog


    • /

      返回文章
      返回