留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  819
  • HTML全文浏览量:  318
  • PDF下载量:  59
  • 被引次数: 0
Tongzhao Zhang, Hongguang Ji, Xiaobo Su, Shuang You, Daolu Quan, Zhou Zhang,  and Jinzhe Li, Evaluation and classification of rock heterogeneity based on acoustic emission detection, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2117-2125. https://doi.org/10.1007/s12613-021-2381-4
Cite this article as:
Tongzhao Zhang, Hongguang Ji, Xiaobo Su, Shuang You, Daolu Quan, Zhou Zhang,  and Jinzhe Li, Evaluation and classification of rock heterogeneity based on acoustic emission detection, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2117-2125. https://doi.org/10.1007/s12613-021-2381-4
引用本文 PDF XML SpringerLink
研究论文

基于声发射检测的岩石材料非均质性评价与分类研究

  • 通讯作者:

    纪洪广    E-mail: jihongguang@ces.ustb.edu.cn

文章亮点

  • (1) 系统地研究了不同非均质性岩石巴西劈裂过程中的声发射信号特征。
  • (2) 提出了基于声发射探测技术的岩石非均质性评价方法。
  • (3) 阐述了岩石非均质性对岩石宏观力学参数的影响机制,有望用于深部岩石力学性质的变异性研究。
  • 对于深部岩石力学和地下工程而言,准确表征与评价岩石的非均质性,对于研究岩石在深部复杂环境下物理力学性质的变异性至关重要。由于岩石成分的复杂性和矿物分布的随机性,采用传统的图像观察方法难以准确的表述岩石的非均质性,因此,亟需寻找一种科学、实用的试验方法对岩石的非均质性进行表征评价。本文假设同种岩石具有相同的矿物几何特征及边界特征(即岩石的微观基质相同),岩石在破坏过程中强相矿物破坏的声发射信号相比于弱相矿物破坏的声发射信号较多。岩石巴西劈裂过程中轴线上的破裂可以近似的认为岩石内部强弱相矿物的依次破裂,通过统计不同应力阶段岩石的声发射信号特征可以间接的分析岩石内部强弱相矿物的差异性。基于此,通过定义岩石强弱相矿物占比及矿物空间分布的均匀性表征出了岩石的非均质性。之后选取不同特征变辉长岩和花岗岩验证了分析方法的科学性和实用性。最后,本文在岩石非均质性评价的基础上探究了岩石宏观力学参数与岩石非均质特征的相关性。单轴和三轴试验表明,岩石的峰值强度和弹性模量不仅仅与岩石强弱相矿物占比有关,也与岩石矿物空间分布的均匀性相关。
  • Research Article

    Evaluation and classification of rock heterogeneity based on acoustic emission detection

    + Author Affiliations
    • For deep rock mechanics and subsurface engineering, accurately characterizing and evaluating rock heterogeneity as well as analyzing the correlation between the heterogeneity and physical and mechanical properties of rocks are critical. This study investigated the characteristics of acoustic emission signals produced in the process of strong and weak phase damage to rocks. The failure mechanisms of the strong and weak phases were analyzed by performing Brazilian splitting tests on different metagabbros and granites. The strong–weak phase ratio of the rocks and the uniformity of their spatial distribution were characterized. Test results show that as the feldspar develops, the strong-phase ratio of the metagabbro increases. However, the spatial distribution of feldspar minerals in the metagabbro becomes less uniform. The mineral spatial distribution uniformity in the altered granite is good; however, its strong-phase ratio is low. Furthermore, the strong-phase ratio of the typical granite is high; however, its mineral spatial distribution uniformity is poor. Moreover, uniaxial and triaxial test results show that the peak strength and elastic modulus of the rocks are related to the strong–weak phase ratio and mineral spatial distribution uniformity of the rocks. This study provides a new analytical method for the mechanical evaluation of deep rocks.
    • loading
    • [1]
      Y.S. Zhao, Q.R. Meng, T.H. Kang, N. Zhang, and B.P. Xi, Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite, Chin. J. Rock Mech. Eng., 27(2008), No. 1, p. 28.
      [2]
      C.D. Martin and B. Stimpson, The effect of sample disturbance on laboratory properties of Lac du Bonnet granite, Can. Geotech. J., 31(1994), No. 5, p. 692.
      [3]
      Y.X. Zhao, S.M. Liu, G.F. Zhao, D. Elsworth, Y.D. Jiang, and J.L. Han, Failure mechanisms in coal: Dependence on strain rate and microstructure, J. Geophys. Res. Solid Earth, 119(2014), No. 9, p. 6924. doi: 10.1002/2014JB011198
      [4]
      D.K. Hallbauer, H. Wagner, and N.G.W. Cook, Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(1973), No. 6, p. 713. doi: 10.1016/0148-9062(73)90015-6
      [5]
      A. Tuğrul and I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey, Eng. Geol., 51(1999), No. 4, p. 303. doi: 10.1016/S0013-7952(98)00071-4
      [6]
      Ö. Ündül, Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks, Eng. Geol., 210(2016), p. 10. doi: 10.1016/j.enggeo.2016.06.001
      [7]
      Ö. Ündül, F. Amann, N. Aysal, and M.L. Plötze, Micro-textural effects on crack initiation and crack propagation of andesitic rocks, Eng. Geol., 193(2015), p. 267. doi: 10.1016/j.enggeo.2015.04.024
      [8]
      S. Cowie and G. Walton, The effect of mineralogical parameters on the mechanical properties of granitic rocks, Eng. Geol., 240(2018), p. 204. doi: 10.1016/j.enggeo.2018.04.021
      [9]
      S. Chen, Z.Q. Yue, and L.G. Tham, Digital image-based numerical modeling method for prediction of inhomogeneous rock failure, Int. J. Rock Mech. Min. Sci., 41(2004), No. 6, p. 939. doi: 10.1016/j.ijrmms.2004.03.002
      [10]
      Z.Q. Zhu, Q. Sheng, and X.D. Fu, Numerical simulation of fracture propagation of heterogeneous material, Appl. Mech. Mater., 170-173(2012), p. 581. doi: 10.4028/www.scientific.net/AMM.170-173.581
      [11]
      Q.S. Liu and Z.W. Wang, Review of numerical modeling based on digital image processing for rock mechanics applications, Chin. J. Rock Mech. Eng., 39(2020), No. S2, p. 3286.
      [12]
      A.K.H. Kwan, C.F. Mora, and H.C. Chan, Particle shape analysis of coarse aggregate using digital image processing, Cem. Concr. Res., 29(1999), No. 9, p. 1403. doi: 10.1016/S0008-8846(99)00105-2
      [13]
      Z.Q. Yue, S. Chen, and L.G. Tham, Finite element modeling of geomaterials using digital image processing, Comput. Geotech., 30(2003), No. 5, p. 375. doi: 10.1016/S0266-352X(03)00015-6
      [14]
      Z.Q. Yue, S. Chen, H. Zheng, and L.G. Tham, Digital image proceeding based on finite element method for geomaterials, Chin. J. Rock Mech. Eng., 23(2004), No. 6, p. 889.
      [15]
      S. Chen, Z.Q. Yue, and L.G. Tham, Digital image based numerical modeling method for heterogeneous geomaterials, Chin. J. Geotech. Eng., 27(2005), No. 8, p. 956.
      [16]
      S. Chen, Z.Q. Yue, and L.G. Tham, Digital image based approach for three-dimensional mechanical analysis of heterogeneous rocks, Rock Mech. Rock Eng., 40(2007), No. 2, p. 145. doi: 10.1007/s00603-006-0105-8
      [17]
      T. Lebourg, J. Riss, and E. Pirard, Influence of morphological characteristics of heterogeneous moraine formations on their mechanical behaviour using image and statistical analysis, Eng. Geol., 73(2004), No. 1-2, p. 37. doi: 10.1016/j.enggeo.2003.11.004
      [18]
      W.J. Xu, Z.Q. Yue, and R.L. Hu, Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method, Int. J. Rock Mech. Min. Sci., 45(2008), No. 5, p. 749. doi: 10.1016/j.ijrmms.2007.09.003
      [19]
      O.K. Mahabadi, B.S.A. Tatone, and G. Grasselli, Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks, J. Geophys. Res. Solid Earth, 119(2014), No. 7, p. 5324. doi: 10.1002/2014JB011064
      [20]
      X. Tan, H. Konietzky, and W. Chen, Numerical simulation of heterogeneous rock using discrete element model based on digital image processing, Rock Mech. Rock Eng., 49(2016), No. 12, p. 4957. doi: 10.1007/s00603-016-1030-0
      [21]
      B. Chen, J.S. Xiang, J.P. Latham, and R.R. Bakker, Grain-scale failure mechanism of porous sandstone: An experimental and numerical FDEM study of the Brazilian Tensile Strength test using CT-Scan microstructure, Int. J. Rock Mech. Min. Sci., 132(2020), art. No. 104348. doi: 10.1016/j.ijrmms.2020.104348
      [22]
      Y. Zhou, Y.T. Gao, S.C. Wu, Q. Yan, and H. Sun, An equivalent crystal model for mesoscopic behaviour of rock, Chin. J. Rock Mech. Eng., 34(2015), No. 3, p. 511.
      [23]
      X.J. Hu, K. Bian, J. Liu, B.Y. Li, and M. Chen, Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite, Chin. J. Rock. Mech. Eng., 38(2019), No. 10, p. 2069.
      [24]
      L.W. Liu, H.B. Li, X.F. Li, G.K. Zhang, and R.J. Wu, Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression, Chin. J. Geotech. Eng., 42(2020), No. 3, p. 542.
      [25]
      Y.T. Gao, T.H. Wu, and Y. Zhou, Application and prospective of 3D printing in rock mechanics: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 1. doi: 10.1007/s12613-020-2119-8
      [26]
      D. Lockner, The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(1993), No. 7, p. 883. doi: 10.1016/0148-9062(93)90041-B
      [27]
      P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, H.F. Wang, and K. Liu, Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1217. doi: 10.1007/s12613-019-1887-5
      [28]
      S.H. Chang and C. Lee, Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission, Int. J. Rock Mech. Min. Sci., 41(2004), No. 7, p. 1069. doi: 10.1016/j.ijrmms.2004.04.006
      [29]
      J.P. Liu, Y.H. Li, S.D. Xu, S. Xu, and C.Y. Jin, Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission, Theor. Appl. Fract. Mech., 75(2015), p. 151. doi: 10.1016/j.tafmec.2014.12.006
      [30]
      X.G. Zhao, M. Cai, J. Wang, and L.K. Ma, Damage stress and acoustic emission characteristics of the Beishan granite, Int. J. Rock Mech. Min. Sci., 64(2013), p. 258. doi: 10.1016/j.ijrmms.2013.09.003
      [31]
      H.B. Zhao and G.Z. Yin, Study of acoustic emission characteristics and damage equation of coal containing gas, Rock Soil Mech., 32(2011), No. 3, p. 667.

    Catalog


    • /

      返回文章
      返回