留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(7)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  991
  • HTML全文浏览量:  381
  • PDF下载量:  34
  • 被引次数: 0
Wakul Bumrungsan, Kritsada Hongsith, Vasan Yarangsi, Pisith Kumnorkeaw, Sukrit Sucharitakul, Surachet Phaduangdhitidhada, and Supab Choopun, Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1963-1970. https://doi.org/10.1007/s12613-021-2382-3
Cite this article as:
Wakul Bumrungsan, Kritsada Hongsith, Vasan Yarangsi, Pisith Kumnorkeaw, Sukrit Sucharitakul, Surachet Phaduangdhitidhada, and Supab Choopun, Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1963-1970. https://doi.org/10.1007/s12613-021-2382-3
引用本文 PDF XML SpringerLink
研究论文

利用异丁基碘化铵表面钝化法提高Cs0.1(CH3NH3)0.9PbI3钙钛矿太阳能电池的效率

  • 通讯作者:

    Supab Choopun    E-mail: supab99@gmail.com

  • 本文通过使用异丁基碘化铵 (IBA)对Cs0.1(CH3NH3)0.9PbI3 薄膜进行表面钝化来提高Cs0.1(CH3NH3)0.9PbI3太阳能电池器件的效率。首先采用 FTO/SnO2/Cs0.1(CH3NH3)0.9PbI3(FTO,即氟掺杂氧化锡)和 IBA/Spiro-OMeTAD/Ag制备了n–i–p 结构的钙钛矿太阳能电池器件。然后,系统地研究了不同重量的 IBA 钝化对 Cs 掺杂钙钛矿太阳能电池 (PSC) 的影响,并与未钝化的器件进行了比较。研究发现,使用 5-mg IBA 钝化器件的功率转换效率 (PCE)为15.49%,高于非 IBA 钝化器件的12.64% 。同时,与 Cs 掺杂器件相比, 5-mg IBA 钝化器件的光伏参数明显得到改善。此外,晶体结构中PbI2相的减少、较低的电荷复合率、较低的电荷转移电阻和改善的钙钛矿薄膜接触角等结果进一步证实了IBA钝化器件具备更好性能。因此,对Cs0.1(CH3NH3)0.9PbI3进行 IBA 钝化是提高 Cs 掺杂钙钛矿太阳能电池效率的有前景的技术。
  • Research Article

    Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide

    + Author Affiliations
    • Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 solar cell devices was performed by using iso-butyl ammonium iodide (IBA) passivated on Cs0.1(CH3NH3)0.9PbI3 films. The n–i–p structure of perovskite solar cell devices was fabricated with the structure of FTO/SnO2/Cs0.1(CH3NH3)0.9PbI3 (FTO, i.e., fluorine doped tin oxide) and IBA/Spiro-OMeTAD/Ag. The effect of different weights of IBA passivated on Cs-doped perovskite solar cells (PSCs) was systematically investigated and compared with non-passivated devices. It was found that the 5-mg IBA-passivated devices exhibited a high power conversion efficiency (PCE) of 15.49% higher than 12.64% of non-IBA-passivated devices. The improvement of photovoltaic parameters of the 5-mg IBA-passivated device can be clearly observed compared to the Cs-doped device. The better performance of the IBA-passivated device can be confirmed by the reduction of PbI2 phase in the crystal structure, lower charge recombination rate, lower charge transfer resistance, and improved contact angle of perovskite films. Therefore, IBA passivation on Cs0.1(CH3NH)0.9PbI3 is a promising technique to improve the efficiency of Cs-doped perovskite solar cells.
    • loading
    • [1]
      J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, and N.G. Park, High-efficiency perovskite solar cells, Chem. Rev., 120(2020), No. 15, p. 7867. doi: 10.1021/acs.chemrev.0c00107
      [2]
      R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J.J. Xue, and Y. Yang, A review of perovskites solar cell stability, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1808843. doi: 10.1002/adfm.201808843
      [3]
      A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
      [4]
      National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart [2021-02]. http://www.nrel.gov/pv/cell-efficiency.html
      [5]
      D. Wang, M. Wright, N.K. Elumalai, and A. Uddin, Stability of perovskite solar cells, Sol. Energy Mater. Sol. Cells, 147(2016), p. 255. doi: 10.1016/j.solmat.2015.12.025
      [6]
      G.D. Niu, X.D. Guo, and L.D. Wang, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 17, p. 8970. doi: 10.1039/C4TA04994B
      [7]
      J. Peng, Y.L. Wu, W. Ye, D.A. Jacobs, H.P. Shen, X. Fu, Y.M. Wan, T. Duong, N.D. Wu, C. Barugkin, H.T. Nguyen, D.Y. Zhong, J.T. Li, T. Lu, Y. Liu, M.N. Lockrey, K.J. Weber, K.R. Catchpole, and T.P. White, Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis, Energy Environ. Sci., 10(2017), No. 8, p. 1792. doi: 10.1039/C7EE01096F
      [8]
      Z.P. Wang, Q.Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith, Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites, Nat. Energy, 2(2017), No. 9, art. No. 17135. doi: 10.1038/nenergy.2017.135
      [9]
      K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M.T. Hörantner, J.T.W. Wang, C.Z. Li, A.K.Y. Jen, T.L. Lee, and H.J. Snaith, C60 as an efficient n-type compact layer in perovskite solar cells, J. Phys. Chem. Lett., 6(2015), No. 12, p. 2399. doi: 10.1021/acs.jpclett.5b00902
      [10]
      F. Matteocci, L. Cinà, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, C. Ducati, and A. Di Carlo, Encapsulation for long-term stability enhancement of perovskite solar cells, Nano Energy, 30(2016), p. 162. doi: 10.1016/j.nanoen.2016.09.041
      [11]
      Z.Y. Fu, M. Xu, Y.S. Sheng, Z.B. Yan, J. Meng, C.H. Tong, D. Li, Z.N. Wan, Y. Ming, A.Y. Mei, Y. Hu, Y.G. Rong, and H.W. Han, Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability, Adv. Funct. Mater., 29(2019), No. 16, art. No. 1809129. doi: 10.1002/adfm.201809129
      [12]
      H. Zhang, H. Wang, W. Chen, and A.K.Y. Jen, CuGaO2: A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells, Adv. Mater., 29(2017), No. 8, art. No. 1604984. doi: 10.1002/adma.201604984
      [13]
      J. Tirado, M. Vásquez-Montoya, C. Roldán-Carmona, M. Ralaiarisoa, N. Koch, M.K. Nazeeruddin, and F. Jaramillo, Air-stable n–i–p planar perovskite solar cells using nickel oxide nanocrystals as sole hole-transporting material, ACS Appl. Energy Mater., 2(2019), No. 7, p. 4890. doi: 10.1021/acsaem.9b00603
      [14]
      J.B. You, L. Meng, T.B. Song, T.F. Guo, Y. Yang, W.H. Chang, Z.R. Hong, H.J. Chen, H.P. Zhou, Q. Chen, Y.S. Liu, N. De Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol., 11(2016), No. 1, p. 75. doi: 10.1038/nnano.2015.230
      [15]
      L. Chu and L.M. Ding, Self-assembled monolayers in perovskite solar cells, J. Semicond., 42(2021), No. 9, art. No. 090202. doi: 10.1088/1674-4926/42/9/090202
      [16]
      Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G. Yin, and J.B. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics, 13(2019), No. 7, p. 460. doi: 10.1038/s41566-019-0398-2
      [17]
      J.M. Xia, C. Liang, S.L. Mei, H. Gu, B.C. He, Z.P. Zhang, T.H. Liu, K.Y. Wang, S.S. Wang, S. Chen, Y.Q. Cai, and G.C. Xing, Deep surface passivation for efficient and hydrophobic perovskite solar cells, J. Mater. Chem. A, 9(2021), No. 5, p. 2919. doi: 10.1039/D0TA10535J
      [18]
      L. Chu, Pseudohalide anion engineering for highly efficient and stable perovskite solar cells, Matter, 4(2021), No. 6, p. 1762. doi: 10.1016/j.matt.2021.05.007
      [19]
      L. Yangi, Y.W. Li, Y.X. Pei, J.Q. Wang, H. Lin, and X. Li, A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells, J. Mater. Chem. A, 8(2020), No. 16, p. 7808. doi: 10.1039/C9TA13719J
      [20]
      Y.F. Wang, H. Xu, F. Wang, D.T. Liu, H. Chen, H.L. Zheng, L. Ji, P. Zhang, T. Zhang, Z.D. Chen, J. Wu, L. Chen, and S.B. Li, Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D–3D perovskite solar cells through sequential deposition process, Chem. Eng. J., 391(2020), art. No. 123589. doi: 10.1016/j.cej.2019.123589
      [21]
      J. Horn, M. Scholz, K. Oum, T. Lenzer, and D. Schlettwein, Influence of phenylethylammonium iodide as additive in the formamidinium tin iodide perovskite on interfacial characteristics and charge carrier dynamics, APL Mater., 7(2019), No. 3, art. No. 031112. doi: 10.1063/1.5083624
      [22]
      Y. Zhang, S. Jang, I.W. Hwang, Y.K. Jung, B.R. Lee, J.H. Kim, K.H. Kim, and S.H. Park, Bilateral interface engineering for efficient and stable perovskite solar cells using phenylethylammonium iodide, ACS Appl. Mater. Interfaces, 12(2020), No. 22, p. 24827. doi: 10.1021/acsami.0c05632
      [23]
      Y.H. Liu, S. Akin, A. Hinderhofer, F.T. Eickemeyer, H.W. Zhu, J.Y. Seo, J.H. Zhang, F. Schreiber, H. Zhang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, and M. Grätzel, Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers, Angew. Chem. Int. Ed., 59(2020), No. 36, p. 15688. doi: 10.1002/anie.202005211
      [24]
      H.Y. Zheng, G.Z. Liu, L.Z. Zhu, J.J. Ye, X.H. Zhang, A. Alsaedi, T. Hayat, X. Pan, and S.Y. Dai, The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition, Adv. Energy Mater., 8(2018), No. 21, art. No. 1800051. doi: 10.1002/aenm.201800051
      [25]
      Y.T. Zheng, T.T. Niu, X.Q. Ran, J. Qiu, B.X. Li, Y.D. Xia, Y.H. Chen, and W. Huang, Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application, J. Mater. Chem. A, 7(2019), No. 23, p. 13860. doi: 10.1039/C9TA03217G
      [26]
      H.W. Zhu, Y.H. Liu, F.T. Eickemeyer, L.F. Pan, D. Ren, M.A. Ruiz-Preciado, B. Carlsen, B.W. Yang, X.F. Dong, Z.W. Wang, H.L. Liu, S.R. Wang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, X.G. Li, and M. Grätzel, Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency, Adv. Mater., 32(2020), No. 12, art. No. 1907757. doi: 10.1002/adma.201907757
      [27]
      Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee, J. Seidel, X.F. Deng, M.A. Green, S.J. Huang, and A.W.Y. Ho-Baillie, Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability, Adv. Energy Mater., 8(2018), No. 20, art. No. 1703392. doi: 10.1002/aenm.201703392
      [28]
      V. Yarangsi, K. Hongsith, S. Sucharitakul, A. Ngamjarurojana, A. Tuantranont, P. Kumnorkaew, Y.X. Zhao, S. Phadungdhitidhada, and S. Choopun, Interface modification of SnO2 layer using p–n junction double layer for efficiency enhancement of perovskite solar cell, J. Phys. D: Appl. Phys., 53(2020), No. 50, art. No. 505103. doi: 10.1088/1361-6463/abb1e8
      [29]
      K.C. Hsiao, M.H. Jao, B.T. Li, T.H. Lin, S.H.C. Liao, M.C. Wu, and W.F. Su, Enhancing efficiency and stability of hot casting p–i–n perovskite solar cell via dipolar ion passivation, ACS Appl. Energy Mater., 2(2019), No. 7, p. 4821. doi: 10.1021/acsaem.9b00486
      [30]
      S.N. Habisreutinger, N.K. Noel, and H.J. Snaith, Hysteresis index: A figure without merit for quantifying hysteresis in perovskite solar cells, ACS Energy Lett., 3(2018), No. 10, p. 2472. doi: 10.1021/acsenergylett.8b01627
      [31]
      Y.P. Li, H.J. Li, L.W. Tian, Q.Y. Wang, F.K. Wu, F. Zhang, L. Du, and Y.L. Huang, Vertical phase segregation suppression for efficient FA-based quasi-2D perovskite solar cells via HCl additive, J. Mater. Sci.: Mater. Electron., 31(2020), No. 15, p. 12301. doi: 10.1007/s10854-020-03775-z
      [32]
      X.Q. Zhang, G. Wu, S.D. Yang, W.F. Fu, Z.Q. Zhang, C. Chen, W.Q. Liu, J.L. Yan, W.T. Yang, and H.Z. Chen, Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability, Small, 13(2017), No. 33, art. No. 1700611. doi: 10.1002/smll.201700611
      [33]
      H. Choi, J. Jeong, H.B. Kim, S. Kim, B. Walker, G.H. Kim, and J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7(2014), p. 80. doi: 10.1016/j.nanoen.2014.04.017
      [34]
      M. Adnan and J.K. Lee, Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor, RSC Adv., 10(2020), No. 9, p. 5454. doi: 10.1039/C9RA09607H
      [35]
      F. Huang, P. Siffalovic, B. Li, S.X. Yang, L.X. Zhang, P. Nadazdy, G.Z. Cao, and J.J. Tian, Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells, Chem. Eng. J., 394(2020), art. No. 124959. doi: 10.1016/j.cej.2020.124959
      [36]
      I. Hwang, M. Baek, and K. Yong, Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells, ACS Appl. Mater. Interfaces, 7(2015), No. 50, p. 27863. doi: 10.1021/acsami.5b09442
      [37]
      G.T. Dai, L. Zhao, J. Li, L. Wan, F. Hu, Z.X. Xu, B.H. Dong, H.B. Lu, S.M. Wang, and J.G. Yu, A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film, J. Colloid Interface Sci., 365(2012), No. 1, p. 46. doi: 10.1016/j.jcis.2011.08.073
      [38]
      J.T. Park, D.K. Roh, W.S. Chi, R. Patel, and J.H. Kim, Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells, J. Ind. Eng. Chem., 18(2012), No. 1, p. 449. doi: 10.1016/j.jiec.2011.11.029

    Catalog


    • /

      返回文章
      返回