留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(10)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  6401
  • HTML全文浏览量:  2868
  • PDF下载量:  142
  • 被引次数: 0
Yanbiao Chen, Wenguo Liu,  and Haibin Zuo, Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1862-1872. https://doi.org/10.1007/s12613-021-2385-0
Cite this article as:
Yanbiao Chen, Wenguo Liu,  and Haibin Zuo, Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1862-1872. https://doi.org/10.1007/s12613-021-2385-0
引用本文 PDF XML SpringerLink
研究论文

高磷铁矿富氢烧结过程中磷的还原行为研究

  • 通讯作者:

    左海滨    E-mail: zuohaibin@ustb.edu.cn

文章亮点

  • (1) 提出了基于富氢烧结工艺气化除磷新技术。
  • (2) 系统研究了富氢气氛下磷灰石还原机理和动力学行为。
  • (3) 设计了富氢烧结过程磷的气化与回收流程。
  • 高磷铁矿石资源因其磷含量高、矿相结构复杂而被认为是一种难选铁矿石,因此寻找创新性工艺技术实现高磷铁矿资源的高效开发与利用具有重要的理论和实际意义。基于此,提出了富氢烧结过程中进行磷的气化脱除的方法。本文围绕高磷铁矿富氢烧结过程中磷的还原机理进行研究,并采用非等温动力学方法对富氢烧结过程磷灰石还原动力学进行研究。结果表明富氢烧结过程中,随着还原时间从20增加到60 min,脱磷率从10.93%升高到29.51%。随着磷灰石的还原,金属铁聚集,还原出的部分磷气体被金属铁吸收形成稳定的铁磷化合物,导致脱磷率降低。磷灰石还原主要集中在烧结矿带、燃烧带,还原出的磷气体挥发到该区域的烟气中在抽风负压的作用下向下移动,在经过生料层和过湿层时会被冷凝吸附在料层表面,导致气化脱除率大大降低。基于等转化率的Ozawa公式计算富氢烧结过程中磷灰石还原活化能为80.42 kJ/mol。磷灰石还原的机理函数由微分法(即Freeman–Carroll法)和积分法(即Coats–Redfern法)确定。方程的微分形式为f(α) = 2(1 − α)1/2,方程的积分形式为G(α) = 1 − (1 − α)1/2.
  • Research Article

    Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering

    + Author Affiliations
    • High-phosphorus iron ore resource is considered a refractory iron ore because of its high-phosphorus content and complex ore phase structure. Therefore, the development of innovative technology to realize the efficient utilization of high-phosphorus iron ore resources is of theoretical and practical significance. Thus, a method for phosphorus removal by gasification in the hydrogen-rich sintering process was proposed. In this study, the reduction mechanism of phosphorus in hydrogen-rich sintering, as well as the reduction kinetics of apatite based on the non-isothermal kinetic method, was investigated. Results showed that, by increasing the reduction time from 20 to 60 min, the dephosphorization rate increased from 10.93% to 29.51%. With apatite reduction, the metal iron accumulates, and part of the reduced phosphorus gas is absorbed by the metal iron to form stable iron–phosphorus compounds, resulting in a significant reduction of the dephosphorization rate. Apatite reduction is mainly concentrated in the sintering and burning zones, and the reduced phosphorus gas moves downward along with flue gas under suction pressure and is condensed and adsorbed partly by the sintering bed when passing through the drying zone and over the wet zone. As a result, the dephosphorization rate is considerably reduced. Based on the Ozawa formula of the iso-conversion rate, the activation energy of apatite reduction is 80.42 kJ/mol. The mechanism function of apatite reduction is determined by a differential method (i.e., the Freeman–Carroll method) and an integral method (i.e., the Coats–Redfern method). The differential form of the equation is f(α) = 2(1 − α)1/2, and the integral form of the equation is G(α) = 1 − (1 − α)1/2.
    • loading
    • [1]
      Y. Jégourel, The global iron ore market: From cyclical developments to potential structural changes, Extr. Ind. Soc., 7(2020), No. 3, p. 1128. doi: 10.1016/j.exis.2020.05.015
      [2]
      X.Q. Hao, H.Z. An, X.Q. Sun, and W.Q. Zhong, The import competition relationship and intensity in the international iron ore trade: From network perspective, Resour. Policy, 57(2018), p. 45. doi: 10.1016/j.resourpol.2018.01.005
      [3]
      J.X. Wu, J. Yang, L.W. Ma, Z. Li, and X.S. Shen, A system analysis of the development strategy of iron ore in China, Resour. Policy, 48(2016), p. 32. doi: 10.1016/j.resourpol.2016.01.010
      [4]
      H. Baioumy, M. Omran, and T. Fabritius, Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt, Ore Geol. Rev., 80(2017), p. 185. doi: 10.1016/j.oregeorev.2016.06.030
      [5]
      J. Wu, Z.J. Wen, and M.J. Cen, Development of technologies for high phosphorus oolitic hematite utilization, Steel Res. Int., 82(2011), No. 5, p. 494. doi: 10.1002/srin.201100040
      [6]
      S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and X.H. Li, Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1908. doi: 10.1007/s12613-021-2329-8
      [7]
      M. Altiner, Upgrading of iron ores using microwave assisted magnetic separation followed by dephosphorization leaching, Can. Metall. Q., 58(2019), No. 4, p. 445. doi: 10.1080/00084433.2019.1619063
      [8]
      W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
      [9]
      Y.Y. Zhang, Q.G. Xue, H.B. Zuo, C. Cheng, G. Wang, F. Han, and J.S. Wang, Intermittent microscopic observation of structure change and mineral reactions of high phosphorus oolitic hematite in carbothermic reduction, ISIJ Int., 57(2017), No. 7, p. 1149. doi: 10.2355/isijinternational.ISIJINT-2016-690
      [10]
      E. Matinde and M. Hino, Dephosphorization treatment of high phosphorus iron ore by pre-reduction, air jet milling and screening methods, ISIJ Int., 51(2011), No. 4, p. 544. doi: 10.2355/isijinternational.51.544
      [11]
      L. Zhang, R. Machiela, P. Das, M.M. Zhang, and T. Eisele, Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature, Hydrometallurgy, 184(2019), p. 95. doi: 10.1016/j.hydromet.2018.12.023
      [12]
      S.B. Kanungo and B.R. Sant, Dephosphorization of phosphorus-rich manganese ores by selective leaching with dilute hydrochloric acid, Int. J. Miner. Process., 8(1981), No. 4, p. 359. doi: 10.1016/0301-7516(81)90022-3
      [13]
      M.J. Fisher-White, R.R. Lovel, and G.J. Sparrow, Phosphorus removal from goethitic iron ore with a low temperature heat treatment and a caustic leach, ISIJ Int., 52(2012), No. 5, p. 797. doi: 10.2355/isijinternational.52.797
      [14]
      C.N. Anyakwo and O.W. Obot, Phosphorus removal capability of aspergillus terreus and bacillus subtilis from Nigeria’s agbaja iron ore, J. Miner. Mater. Charact. Eng., 9(2010), No. 12, p. 1131. doi: 10.4236/jmmce.2010.912082
      [15]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [16]
      K. Gi, F. Sano, T. Homma, J. Oda, A. Hayashi, and K. Akimoto, An analysis on global energy-related CO2 emission reduction and energy systems by current climate and energy policies and the nationally determined contributions, J. Jpn. Inst. Energy, 97(2018), No. 6, p. 135. doi: 10.3775/jie.97.135
      [17]
      V. Shatokha, E. Matukhno, K. Belokon, and G. Shmatkov, Potential means to reduce CO2 emissions of iron and steel industry in Ukraine using best available technologies, J. Sustain. Metall., 6(2020), No. 3, p. 451. doi: 10.1007/s40831-020-00289-0
      [18]
      D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
      [19]
      N. Oyama, Y. Iwami, T. Yamamoto, S. Machida, T. Higuchi, H. Sato, M. Sato, K. Takeda, Y. Watanabe, M. Shimizu, and K. Nishioka, Development of secondary-fuel injection technology for energy reduction in the iron ore sintering process, ISIJ Int., 51(2011), No. 6, p. 913. doi: 10.2355/isijinternational.51.913
      [20]
      M.N. Abu Tahari, F. Salleh, T.S. Tengku Saharuddin, N. Dzakaria, A. Samsuri, M.W. Mohamed Hisham, and M.A. Yarmo, Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature, Int. J. Hydrogen Energy, 44(2019), No. 37, p. 20751. doi: 10.1016/j.ijhydene.2018.09.186
      [21]
      M. Mizutani, T. Nishimura, T. Orimoto, K. Higuchi, S. Nomura, K. Saito, and E. Kasai, Influence of reducing gas composition on disintegration behavior of iron ore agglomerates, ISIJ Int., 57(2017), No. 9, p. 1499. doi: 10.2355/isijinternational.ISIJINT-2017-074
      [22]
      E.A. Mousa, A. Babich, and D. Senk, Enhancement of iron ore sinter reducibility through coke oven gas injection into the modern blast furnace, ISIJ Int., 53(2013), No. 8, p. 1372. doi: 10.2355/isijinternational.53.1372
      [23]
      W. Gleason, An introduction to phosphorus: History, production, and application, JOM, 59(2007), No. 6, p. 17. doi: 10.1007/s11837-007-0071-y
      [24]
      M.A.M. Alzaky and D.X. Li, Sulfate of potash and yellow phosphorus to simultaneously remove SO2–NO and obtain a complete fertilizer, Atmos. Pollut. Res., 12(2021), No. 2, p. 147. doi: 10.1016/j.apr.2020.10.017
      [25]
      W. Zhang, H.W Xing, T.L. Tian, and H. Wang, Theory and Practice of Gasificating Dephosphorization in Sintering Process, Metallurgical Industry Press, Beijing, 2016.
      [26]
      Y.B. Chen and H.B. Zuo, Gasification behavior of phosphorus during pre-reduction sintering of medium-high phosphorus iron ore, ISIJ Int., 61(2021), No. 5, p. 1459. doi: 10.2355/isijinternational.ISIJINT-2020-564
      [27]
      S.K. El-Rahaiby and Y.K. Rao, The kinetics of reduction of iron oxides at moderate temperatures, Metall. Trans. B, 10(1979), No. 2, p. 257. doi: 10.1007/BF02652470
      [28]
      H.S. Chen, Z. Zheng, Z.W. Chen, W.Z. Yu, and J.R. Yue, Multistep reduction kinetics of fine iron ore with carbon monoxide in a micro fluidized bed reaction analyzer, Metall. Mater. Trans. B, 48(2017), No. 2, p. 841. doi: 10.1007/s11663-016-0883-7
      [29]
      J.G. Santos, M.M. Conceiçăo, M.F. Trindade, A.S. Araújo, V.J. Fernandes Jr, and A.G. Souza, Kinetic study of dipivaloylmethane by ozawa method, J. Therm. Anal. Calorim., 75(2004), No. 2, p. 591. doi: 10.1023/B:JTAN.0000027150.30994.48
      [30]
      T. P. Bagchi and P.K. Sen, Kinetics of densification of powder compacts during the initial stage of sintering with constant rates of heating. A thermal analysis approach. Part I. Theoretical considerations, Thermochim. Acta, 56(1982), No. 3, p. 261. doi: 10.1016/0040-6031(82)87034-2
      [31]
      T. P. Bagchi and P.K. Sen, Kinetics of densification of powder compacts during the initial stage of sintering with constant rates of heating. A thermal analysis approach. Part III. Copper powder compacts, Thermochim. Acta, 61(1983), No. 1-2, p. 73. doi: 10.1016/0040-6031(83)80304-9
      [32]
      Q.H. Wu, J.Q. Li, X.D. Lv, B. Xv, C.Y. Chen, and R. Huang, Reaction mechanism of low-grade phosphate ore during vacuum carbothermal reduction, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1484. doi: 10.1007/s11663-021-02117-6
      [33]
      P.M. Sargent and M.F. Ashby, Deformation mechanism maps for alkali metals, Scripta Metall., 18(1984), No. 2, p. 145. doi: 10.1016/0036-9748(84)90494-0
      [34]
      Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938. doi: 10.1007/s12613-019-1810-0
      [35]
      H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257. doi: 10.1007/s12613-020-1995-2
      [36]
      D.Q. Zhu, S.W. Li, J. Pan, C.C. Yang, and B.J. Shi, Migration and distributions of zinc, lead and arsenic within sinter bed during updraft pre-reductive sintering of iron-bearing wastes, Powder Technol., 342(2019), p. 864. doi: 10.1016/j.powtec.2018.10.050

    Catalog


    • /

      返回文章
      返回