留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1466
  • HTML全文浏览量:  370
  • PDF下载量:  152
  • 被引次数: 0
Tongtong Zhang, Wenbo Yu, Chaosheng Ma, Yuqi Zhou, and Shoumei Xiong, Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1310-1316. https://doi.org/10.1007/s12613-021-2386-z
Cite this article as:
Tongtong Zhang, Wenbo Yu, Chaosheng Ma, Yuqi Zhou, and Shoumei Xiong, Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1310-1316. https://doi.org/10.1007/s12613-021-2386-z
引用本文 PDF XML SpringerLink
研究论文

流道设计和增压压力对高压压铸Mg–3.0Nd–0.3Zn–0.6Zr镁合金微观组织的影响

  • 通讯作者:

    于文波    E-mail: wbyu@bjtu.edu.cn

    熊守美    E-mail: smxiong@tsinghua.edu.cn

文章亮点

  • (1)采用了三维重构技术对孔洞缺陷进行了三维表征,并量化统计了铸件选定区域内的孔洞缺陷总体积。
  • (2)对流道进行了优化设计,设计出了一种ESC收集器,可以对在压室中预先形成的ESCs组织进行有效的收集,从而起到了细化晶粒,改善组织的作用。
  • (3) 阐明了预结晶组织ESC对铸件中孔洞缺陷和缺陷带组织的影响,探究了ESC收集器和凝固增压工艺对高压压铸Mg–3.0Nd–0.3Zn–0.6Zr镁合金微观组织与力学性能的影响。
  • 为了阐明压室预结晶组织(ESC)与其他缺陷(如缺陷带和孔洞)之间的关系,本文采用了二维表征和三维重构相结合的方法研究了凝固压力和流道优化设计对压铸Mg–3.0Nd–0.3Zn–0.6Zr镁合金微观组织与力学性能的影响。凝固压力有效的降低了气孔体积和尺寸,其中对于心部的作用效果最为显著。ESCs收集器通过对压室中的ESCs进行收集,有效的减少了铸件中ESCs的尺寸和数量,其中ESCs的面积百分数和平均尺寸分别减少了7% 和8 μm。此外,连续交错的缺陷带组织得到了改善,缺陷带区域和心部区域的大尺寸缩松孔洞显著减少。通过对ESCs和孔洞缺陷的统计分析得出,高压压铸镁合金的机械性能与ESCs的尺寸和分数密切相关,而非铸件孔隙率,减少ESCs组织有效的降低了铸件中缩松孔洞缺陷的数量以及缺陷带宽。拉伸断口分析表明,ESCs的减少导致铸件拉伸断裂模式由穿晶断裂转变为沿晶断裂。
  • Research Article

    Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy

    + Author Affiliations
    • To clarify the relationship between externally solidified crystals (ESCs) and other defects, e.g., defect bands and pores, two dimensional (2D) and three dimensional (3D) characterization methods were adopted to analyze castings produced using a modified ingate system equipped with and without an ESC collector. The reduction of ESCs strongly reduced defect band width and shrinkage pore quantity. By reducing the quantity and size of ESCs, net-shrinkage pores were transformed into isolated island-shrinkage pores. We determined via statistical analysis that the mechanical properties of high pressure die castings were strongly related to the size and fraction of the ESCs rather than porosity volume. The reduction of ESCs also caused tensile transgranular fracture modes to transform into intergranular fracture modes. Additionally, casting pressurization strongly reduced pore morphology, volume, and size.
    • loading
    • [1]
      J. Rong, W.L. Xiao, X.Q. Zhao, C.L. Ma, H.M. Liao, D.L. He, M. Chen, M. Huang, and C. Huang, High thermal conductivity and high strength magnesium alloy for high pressure die cast ultrathin-walled component, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88. doi: 10.1007/s12613-021-2318-y
      [2]
      G.H. Wu, C.L. Wang, M. Sun, and W.J. Ding, Recent developments and applications on high-performance cast magnesium rare-earth alloys, J. Magnes. Alloys, 9(2021), No. 1, p. 1. doi: 10.1016/j.jma.2020.06.021
      [3]
      K.K. Wang, Y.L. Kang, and K. Zhang, Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D, J. Univ. Sci. Technol. Beijing, 9(2002), No. 5, p. 363.
      [4]
      H.I. Laukli, L. Arnberg, and O. Lohne, Effects of grain refiner additions on the grain structures in HPDC A356 castings, Int. J. Cast Met. Res., 18(2005), No. 2, p. 65. doi: 10.1179/136404605225022919
      [5]
      Z.M. Sheggaf, R. Ahmad, M.B.A. Asmael, and A.M.M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1306. doi: 10.1007/s12613-017-1523-1
      [6]
      J.P. Weiler, J.T. Wood, R.J. Klassen, E. Maire, R. Berkmortel, and G. Wang, Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy, Mater. Sci. Eng. A, 395(2005), No. 1-2, p. 315. doi: 10.1016/j.msea.2004.12.042
      [7]
      S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan, and M.F. Horstemeyer, Variability in the tensile ductility of high-pressure die-cast AM50 Mg-alloy, Scripta Mater., 53(2005), No. 7, p. 851. doi: 10.1016/j.scriptamat.2005.06.002
      [8]
      S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan, and M.F. Horstemeyer, Quantitative fractographic analysis of variability in the tensile ductility of high-pressure die-cast AE44 Mg-alloy, Mater. Sci. Eng. A, 427(2006), No. 1-2, p. 255. doi: 10.1016/j.msea.2006.04.108
      [9]
      W.B. Yu, Y.Y. Cao, X.B. Li, Z.P. Guo, and S.M. Xiong, Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy, J. Mater. Sci. Technol., 33(2017), No. 1, p. 52. doi: 10.1016/j.jmst.2016.02.003
      [10]
      R. Helenius, O. Lohne, L. Arnberg, and H.I. Laukli, The heat transfer during filling of a high-pressure die-casting shot sleeve, Mater. Sci. Eng. A, 413-414(2005), p. 52. doi: 10.1016/j.msea.2005.08.166
      [11]
      W.B. Yu, Y.Y. Cao, Z.P. Guo, and S.M. Xiong, Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition, China Foundry, 13(2016), No. 4, p. 269. doi: 10.1007/s41230-016-5137-4
      [12]
      S. Barbagallo, Shrinkage porosity in thin walled AM60 HPDC magnesium alloy U-shaped box, Int. J. Cast Met. Res., 17(2004), No. 6, p. 364. doi: 10.1179/136404604225022676
      [13]
      X.B. Li, Z.P. Guo, and S.M. Xiong, Influence of melt flow on the formation of defect band in high pressure die casting of AZ91D magnesium alloy, Mater. Charact., 129(2017), p. 344. doi: 10.1016/j.matchar.2017.05.009
      [14]
      W.B. Yu, C.S. Ma, Y.H. Ma, and S.M. Xiong, Correlation of 3D defect-band morphologies and mechanical properties in high pressure die casting magnesium alloy, J. Mater. Process. Technol., 288(2021), art. No. 116853. doi: 10.1016/j.jmatprotec.2020.116853
      [15]
      X. Li, S.M. Xiong, and Z. Guo, On the tensile failure induced by defect band in high pressure die casting of AM60B magnesium alloy, Mater. Sci. Eng. A, 674(2016), p. 687. doi: 10.1016/j.msea.2016.08.039
      [16]
      X. Li, S.M. Xiong, and Z. Guo, Failure behavior of high pressure die casting AZ91D magnesium alloy, Mater. Sci. Eng. A, 672(2016), p. 216. doi: 10.1016/j.msea.2016.07.009
      [17]
      Q.L. Wang and S.M. Xiong, Effect of multi-step slow shot speed on microstructure of vacuum die cast AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 2, p. 375. doi: 10.1016/S1003-6326(15)63613-5
      [18]
      S.G. Lee and A.M. Gokhale, Formation of gas induced shrinkage porosity in Mg-alloy high-pressure die-castings, Scripa Mater., 55(2006), No. 4, p. 387. doi: 10.1016/j.scriptamat.2006.04.040
      [19]
      B.D. Lee, U.H. Baek, and J.W. Han, Optimization of gating system design for die casting of thin magnesium alloy-based multi-cavity LCD housings, J. Mater. Eng. Perform., 21(2012), No. 9, p. 1893. doi: 10.1007/s11665-011-0111-1
      [20]
      D.R. Gunasegaram, M. Givord, R.G. O'Donnell, and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Mater. Sci. Eng. A, 559(2013), p. 276. doi: 10.1016/j.msea.2012.08.098
      [21]
      Y. Zhou, Z. Guo, and S.M. Xiong, Effect of runner design on the externally solidified crystals in vacuum die-cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, J. Mater. Process. Technol., 267(2019), p. 366. doi: 10.1016/j.jmatprotec.2018.12.032
      [22]
      X. Li, S.M. Xiong, and Z. Guo, Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy, J. Mater. Process. Technol., 231(2016), p. 1. doi: 10.1016/j.jmatprotec.2015.12.005
      [23]
      Z.X. Li, D.J. Li, W.K. Zhou, B. Hu, X.F. Zhao, J.Y. Wang, M. Qin, J.K. Xu, and X.Q. Zeng, Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2020.12.006
      [24]
      C.S. Ma, W.B. Yu, T.T. Zhang, Z.H. Zhang, Y.H. Ma, and S.M. Xiong, The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.09.011
      [25]
      Z.P. Guo, S.M. Xiong, M. Li, and J. Allison, Relationship between metal-die interfacial heat transfer coefficient and casting solidification rate in high pressure die casting process, Acta Metall. Sin., 45(2009), No. 1, p. 102.
      [26]
      J. Song, S.M. Xiong, M. Li, and J. Allison, The correlation between microstructure and mechanical properties of high-pressure die-cast AM50 alloy, J. Alloys Compd., 477(2009), No. 1-2, p. 863. doi: 10.1016/j.jallcom.2008.11.040
      [27]
      X. Sun, K.S. Choi, and D.S. Li, Predicting the influence of pore characteristics on ductility of thin-walled high pressure die casting magnesium, Mater. Sci. Eng. A, 572(2013), p. 45. doi: 10.1016/j.msea.2013.02.026

    Catalog


    • /

      返回文章
      返回