Cite this article as: |
Yujiao Wang, Yun Zhang, and Haitao Jiang, Tension–compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 92-103. https://doi.org/10.1007/s12613-021-2388-x |
张韵 E-mail: zhangyun@ustb.edu.cn
江海涛 E-mail: jianght@ustb.edu.cn
[1] |
T. Homma, N. Kunito, and S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater., 61(2009), No. 6, p. 644. doi: 10.1016/j.scriptamat.2009.06.003
|
[2] |
K. Oh-ishi, C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo, and K. Hono, Bimodally grained microstructure development during hot extrusion of Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.16 Zr (at.%) alloys, Acta Mater., 57(2009), No. 18, p. 5593. doi: 10.1016/j.actamat.2009.07.057
|
[3] |
C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv, Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing, Mater. Sci. Eng. A, 547(2012), p. 93. doi: 10.1016/j.msea.2012.03.087
|
[4] |
W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, M. Sun, J. Chen, and L.M. Peng, The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg–Gd–Zn–Zr alloys, Mater. Sci. Eng. A, 740-741(2019), p. 262. doi: 10.1016/j.msea.2017.09.125
|
[5] |
D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, and Q.D. Wang, Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg–Y sheets, Int. J. Plast., 136(2021), art. No. 102878. doi: 10.1016/j.ijplas.2020.102878
|
[6] |
L. Xiao, G.Y. Yang, H. Qin, J.Q. Ma, and W.Q. Jie, Asymmetric tension-compression mechanical behavior of the as-cast Mg–4.58Zn–2.6Gd–0.16Zr alloy, Mater. Sci. Eng. A, 801(2021), art. No. 140439. doi: 10.1016/j.msea.2020.140439
|
[7] |
S.H. Park, J.H. Lee, B.G. Moon, and B.S. You, Tension−compression yield asymmetry in as-cast magnesium alloy, J. Alloys Compd., 617(2014), p. 277. doi: 10.1016/j.jallcom.2014.07.164
|
[8] |
B. Raeisinia and S.R. Agnew, Using polycrystal plasticity modeling to determine the effects of grain size and solid solution additions on individual deformation mechanisms in cast Mg alloys, Scripta Mater., 63(2010), No. 7, p. 731. doi: 10.1016/j.scriptamat.2010.03.054
|
[9] |
P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
|
[10] |
S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer, Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta Mater., 54(2006), No. 2, p. 549. doi: 10.1016/j.actamat.2005.09.024
|
[11] |
C. Kale, S. Turnage, D.Z. Avery, H.E. Kadiri, J.B. Jordon, and K.N. Solanki, Towards dynamic tension–compression asymmetry and relative deformation mechanisms in magnesium, Materialia, 9(2020), art. No. 100543. doi: 10.1016/j.mtla.2019.100543
|
[12] |
G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
|
[13] |
F.L. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, and S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in{10
|
[14] |
S. Kamrani and C. Fleck, Effects of calcium and rare-earth elements on the microstructure and tension–compression yield asymmetry of ZEK100 alloy, Mater. Sci. Eng. A, 618(2014), p. 238. doi: 10.1016/j.msea.2014.09.023
|
[15] |
Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, and M.Y. Zheng, Tension-compression asymmetry of extruded Mg–Gd–Y–Zr alloy with a bimodal microstructure studied by in situ synchrotron diffraction, Mater. Des., 170(2019), art. No. 107705. doi: 10.1016/j.matdes.2019.107705
|
[16] |
Y.J. Wang, Y. Zhang, and H.T. Jiang, Effect of grain size uniformity and crystallographic orientation on the corrosion behavior of Mg–2Zn–1Al bar, Mater. Charact., 179(2021), art. No. 111374. doi: 10.1016/j.matchar.2021.111374
|
[17] |
A. Malik, Y.W. Wang, F. Nazeer, M.A. Khan, M. Sajid, S. Jamal, and M.J. Wang, Deformation behavior of Mg–Zn–Zr magnesium alloy on the basis of macro-texture and fine-grain size under tension and compression loading along various directions, J. Alloys Compd., 858(2021), art. No. 157740. doi: 10.1016/j.jallcom.2020.157740
|
[18] |
Y.J. Kim, J.U. Lee, S.H. Kim, Y.M. Kim, and S.H. Park, Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure, Mater. Sci. Eng. A, 754(2019), p. 38. doi: 10.1016/j.msea.2019.03.041
|
[19] |
D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé, Internal strain and texture evolution during deformation twinning in magnesium, Mater. Sci. Eng. A, 399(2005), No. 1-2, p. 1. doi: 10.1016/j.msea.2005.02.016
|
[20] |
C.L. Lv, T.M. Liu, D.J. Liu, S. Jiang, and W. Zeng, Effect of heat treatment on tension-compression yield asymmetry of AZ80 magnesium alloy, Mater. Des., 33(2012), p. 529. doi: 10.1016/j.matdes.2011.04.060
|
[21] |
J. Wang, I.J. Beyerlein, and C.N. Tomé, Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations, Int. J. Plast., 56(2014), p. 156. doi: 10.1016/j.ijplas.2013.11.009
|
[22] |
X. Wan, J. Zhang, X.Y. Mo, and Y. Luo, Effects of pre-strain on twinning behaviors in an extruded Mg−Zr alloy, Mater. Sci. Eng. A, 766(2019), art. No. 138335. doi: 10.1016/j.msea.2019.138335
|
[23] |
C.F. Guo, R.L. Xin, C.H. Ding, B. Song, and Q. Liu, Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor, Mater. Sci. Eng. A, 609(2014), p. 92. doi: 10.1016/j.msea.2014.04.103
|
[24] |
J.R. Luo, A. Godfrey, W. Liu, and Q. Liu, Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling, Acta Mater., 60(2012), No. 5, p. 1986. doi: 10.1016/j.actamat.2011.12.017
|
[25] |
|
[26] |
J. Jiang, A. Godfrey, W. Liu, and Q. Liu, Identification and analysis of twinning variants during compression of a Mg–Al–Zn alloy, Scripta Mater., 58(2008), No. 2, p. 122. doi: 10.1016/j.scriptamat.2007.09.047
|
[27] |
S.G. Hong, S.H. Park, and C.S. Lee, Role of {10-12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater., 58(2010), No. 18, p. 5873. doi: 10.1016/j.actamat.2010.07.002
|
[28] |
A. Chapuis, Y.C. Xin, X.J. Zhou, and Q. Liu, {10-12} Twin variants selection mechanisms during twinning, re-twinning and detwinning, Mater. Sci. Eng. A, 612(2014), p. 431. doi: 10.1016/j.msea.2014.06.088
|
[29] |
H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector Jr, S.R. Agnew, M. Cherkaoui, and S.C. Vogel, The effect of twin-twin interactions on the nucleation and propagation of {10
|
[30] |
M.R. Barnett, M.D. Nave, and A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy, Acta Mater., 60(2012), No. 4, p. 1433. doi: 10.1016/j.actamat.2011.11.022
|
[31] |
X.L. Nan, H.Y. Wang, L. Zhang, J.B. Li, and Q.C. Jiang, Calculation of schmid factors in magnesium: Analysis of deformation behaviors, Scripta Mater., 67(2012), No. 5, p. 443. doi: 10.1016/j.scriptamat.2012.05.042
|
[32] |
T.Z. Han, G.S. Huang, Y.G. Wang, G.G. Wang, Y.C. Zhao, and F.S. Pan, Enhanced mechanical properties of AZ31 magnesium alloy sheets by continuous bending process after V-bending, Prog. Nat. Sci. Mater. Int., 26(2016), No. 1, p. 97. doi: 10.1016/j.pnsc.2016.01.005
|
[33] |
P. Molnár, A. Jäger, and P. Lejček, Twin nucleation at grain boundaries in Mg–3 wt.% Al–1 wt.% Zn alloy processed by equal channel angular pressing, Scripta Mater., 67(2012), No. 5, p. 467. doi: 10.1016/j.scriptamat.2012.06.004
|
[34] |
A. Clair, M. Foucault, O. Calonne, Y. Lacroute, L. Markey, M. Salazar, V. Vignal, and E. Finot, Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges, Acta Mater., 59(2011), No. 8, p. 3116. doi: 10.1016/j.actamat.2011.01.051
|
[35] |
M.N. Zhang, J.H. Wang, Y.P. Zhu, L. Zhang, and P.P. Jin, Ex-situ EBSD analysis of hot deformation behavior and microstructural evolution of Mg–1Al–6Y alloy via uniaxial compression, Mater. Sci. Eng. A, 775(2020), art. No. 138978. doi: 10.1016/j.msea.2020.138978
|
[36] |
J.P. Sun, Z.Q. Yang, H. Liu, J. Han, Y.N. Wu, X.R. Zhuo, D. Song, J.H. Jiang, A.B. Ma, and G.S. Wu, Tension-compression asymmetry of the AZ91 magnesium alloy with multi-heterogenous microstructure, Mater. Sci. Eng. A, 759(2019), p. 703. doi: 10.1016/j.msea.2019.05.093
|
[37] |
H. Zhang, H.Y. Wang, J.G. Wang, J. Rong, M. Zha, C. Wang, P.K. Ma, and Q.C. Jiang, The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys, J. Alloys Compd., 780(2019), p. 312. doi: 10.1016/j.jallcom.2018.11.229
|
[38] |
Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang, Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes, Metall. Mater. Trans. A, 41(2010), No. 13, p. 3473. doi: 10.1007/s11661-010-0410-4
|
[39] |
Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
|
[40] |
E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B, 64(1951), No. 9, p. 747. doi: 10.1088/0370-1301/64/9/303
|
[41] |
H.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 174(1953), No. 19, p. 25.
|
[42] |
M.R. Barnett, Z. Keshavarz, and X. Ma, A semianalytical Sachs model for the flow stress of a magnesium alloy, Metall. Mater. Trans. A, 37(2006), No. 7, p. 2283. doi: 10.1007/BF02586147
|