留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  632
  • HTML全文浏览量:  254
  • PDF下载量:  58
  • 被引次数: 0
Xiaoshuang Guo, Zhengyao Li, Jicai Han, Dong Yang, and Tichang Sun, Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 455-463. https://doi.org/10.1007/s12613-021-2389-9
Cite this article as:
Xiaoshuang Guo, Zhengyao Li, Jicai Han, Dong Yang, and Tichang Sun, Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 455-463. https://doi.org/10.1007/s12613-021-2389-9
引用本文 PDF XML SpringerLink
研究论文

石油焦作还原剂对低品位红土镍矿与赤泥共还原制备镍铁的影响

  • 通讯作者:

    李正要    E-mail: zyli0213@ustb.edu.cn

文章亮点

  • (1) 提出并研究了石油焦作低品位红土镍矿和赤泥共还原过程还原剂的可行性。
  • (2) 研究了低品位红土镍矿和赤泥共还原过程中石油焦的作用机理。
  • (3) 无烟煤S含量较高,作低品位红土镍矿和赤泥共还原的还原剂其镍铁产品含FeS。
  • 石油焦作为工业固体废物,其堆积和储存对生态环境产生巨大的影响。本文对石油焦在低品位红土镍矿与赤泥共还原过程中用作还原剂的可行性及其机理进行了研究。通过研究石油焦用量、焙烧温度和焙烧时间等对红土镍矿与赤泥共还原过程的影响,确定最佳的工艺条件为石油焦用量20wt%、焙烧温度1250°C、焙烧时间60 min。在此条件下,可以获得镍品位1.96wt%、铁品位85.76wt%、镍回收率97.83wt%、铁回收率96.81wt%的镍铁产品。扫描电镜和能谱(SEM–EDS)分析结果表明,红土镍矿与赤泥共还原过程中镍和铁主要以镍铁颗粒的形式存在,镍铁颗粒分布均匀且纯度很高,粒径约30 µm。结果表明,石油焦作为还原剂用于红土镍矿和赤泥共还原是可行的,与无烟煤作还原剂相比,石油焦具有成本低的优点。研究结果不仅为石油焦的利用提供了一个新途径,同时也为缺煤地区红土镍矿与赤泥共还原工艺的利用提供了一种解决方案。

  • Research Article

    Petroleum coke as reductant in co-reduction of low-grade laterite ore and red mud to prepare ferronickel: Reductant and reduction effects

    + Author Affiliations
    • Petroleum coke is industrial solid wastes and its disposal and storage has been a great challenge to the environment. In this study, petroleum coke was utilized as a novel co-reduction reductant of low-grade laterite ore and red mud. A ferronickel product of 1.98wt% nickel and 87.98wt% iron was obtained with 20wt% petroleum coke, when the roasting temperature and time was 1250°C and 60 min, respectively. The corresponding recoveries of nickel and total iron were 99.54wt% and 95.59wt%, respectively. Scanning electron microscopy–energy dispersive spectrometry (SEM–EDS) analysis showed metallic nickel and iron mainly existed in the form of ferronickel particles which distributed uniformly at a size of approximately 30 μm with high purity. This study demonstrated that petroleum coke is a promising reductant in the co-reduction of laterite ore and red mud. Compared to other alternatives, petroleum coke is advantageous with reduced production cost and high applicability in anthracite-deficient areas.

    • loading
    • [1]
      A. Bayram, A. Müezzinoğlu, and R. Seyfioğlu, Presence and control of polycyclic aromatic hydrocarbons in petroleum coke drying and calcination plants, Fuel Process. Technol., 60(1999), No. 2, p. 111. doi: 10.1016/S0378-3820(99)00041-7
      [2]
      X. Yu, D.X. Yu, G. Yu, F.Q. Liu, J.K. Han, J.Q. Wu, and M.H. Xu, Temperature-resolved evolution and speciation of sulfur during pyrolysis of a high-sulfur petroleum coke, Fuel, 295(2021), art. No. 120609. doi: 10.1016/j.fuel.2021.120609
      [3]
      L.X. Wang, E. Sadeghnezhad, M. Riemann, and P. Nick, Microtubule dynamics modulate sensing during cold acclimation in grapevine suspension cells, Plant Sci., 280(2019), p. 18. doi: 10.1016/j.plantsci.2018.11.008
      [4]
      Y. Xiao, D. Pudasainee, R. Gupta, Z.H. Xu, and Y.F. Diao, Bromination of petroleum coke for elemental mercury capture, J. Hazard. Mater., 336(2017), p. 232. doi: 10.1016/j.jhazmat.2017.04.040
      [5]
      W.L. Cai, K. Li, K. Jiang, D.C. Lv, Y.Q. Liu, D. Wang, X.Q. Wang, and C.G. Lai, Utilization of high-sulfur-containing petroleum coke for making sulfur-doped porous carbon composite material and its application in supercapacitors, Diamond Relat. Mater., 116(2021), art. No. 108380. doi: 10.1016/j.diamond.2021.108380
      [6]
      J.H. Lv, X.Y. Wei, Y.Y. Zhang, and Z.M. Zong, Mild oxidation of Yanshan petroleum coke with aqueous sodium hypochlorite, Fuel, 226(2018), p. 658. doi: 10.1016/j.fuel.2018.04.005
      [7]
      R. Fernández-Ruiz, M.J. Redrejo, E.J. Friedrich K., N. Rodríguez, and R. Amils, Suspension assisted analysis of sulfur in petroleum coke by total-reflection X-ray fluorescence, Spectrochim. Acta Part B, 174(2020), art. No. 105997. doi: 10.1016/j.sab.2020.105997
      [8]
      L. Bostanci, A comparative study of petroleum coke and silica aerogel inclusion on mechanical, pore structure, thermal conductivity and microstructure properties of hybrid mortars, J. Build. Eng., 31(2020), art. No. 101478. doi: 10.1016/j.jobe.2020.101478
      [9]
      K. Quast, D.F. Xu, W. Skinner, A. Nosrati, T. Hilder, D.J. Robinson, and J. Addai-Mensah, Column leaching of nickel laterite agglomerates: Effect of feed size, Hydrometallurgy, 134-135(2013), p. 144. doi: 10.1016/j.hydromet.2013.02.001
      [10]
      Z. Zulhan and W. Shalat, Evolution of ferronickel particles during the reduction of low-grade saprolitic laterite nickel ore by coal in the temperature range of 900–1250°C with the addition of CaO–CaF2–H3BO3, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 612. doi: 10.1007/s12613-020-2025-0
      [11]
      J.H. Li, Z.F. Chen, B.P. Shen, Z.F. Xu, and Y.F. Zhang, The extraction of valuable metals and phase transformation and formation mechanism in roasting–water leaching process of laterite with ammonium sulfate, J. Cleaner Prod., 140(2017), p. 1148. doi: 10.1016/j.jclepro.2016.10.050
      [12]
      J.H. Zhang, L.H. Gao, Z.J. He, X.M. Hou, W.L. Zhan, and Q.H. Pang, Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting, J. Mater. Res. Technol., 9(2020), No. 6, p. 12223. doi: 10.1016/j.jmrt.2020.08.036
      [13]
      W.C. Liu, J.K. Yang, and B. Xiao, Review on treatment and utilization of bauxite residues in China, Int. J. Miner. Process., 93(2009), No. 3-4, p. 220. doi: 10.1016/j.minpro.2009.08.005
      [14]
      F. Zhu, Y.B. Li, S.G. Xue, W. Hartley, and H. Wu, Effects of iron–aluminium oxides and organic carbon on aggregate stability of bauxite residues, Environ. Sci. Pollut. Res., 23(2016), No. 9, p. 9073. doi: 10.1007/s11356-016-6172-9
      [15]
      Y.C. Li, X.B. Min, Y. Ke, D.G. Liu, and C.J. Tang, Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation, Waste Manage., 83(2019), p. 202. doi: 10.1016/j.wasman.2018.11.019
      [16]
      Y.Y. Zhang, Q.J. Gao, J. Zhao, M.Y. Li, and Y.H. Qi, Semi-smelting reduction and magnetic separation for the recovery of iron and alumina slag from iron rich bauxite, Minerals, 9(2019), No. 4, art. No. 223. doi: 10.3390/min9040223
      [17]
      E. Mukiza, L.L. Zhang, and X.M. Liu, Durability and microstructure analysis of the road base material prepared from red mud and flue gas desulfurization fly ash, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 555. doi: 10.1007/s12613-019-1915-5
      [18]
      Y.J. Liu and R. Naidu, Hidden values in bauxite residue (red mud): Recovery of metals, Waste Manage., 34(2014), No. 12, p. 2662. doi: 10.1016/j.wasman.2014.09.003
      [19]
      J.Z. Zhang, Z.Y. Yao, K. Wang, F. Wang, H.G. Jiang, M. Liang, J.C. Wei, and G. Airey, Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review, Constr. Build. Mater., 270(2021), art. No. 121419. doi: 10.1016/j.conbuildmat.2020.121419
      [20]
      M.F. Wang and X.M. Liu, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408(2021), art. No. 124420. doi: 10.1016/j.jhazmat.2020.124420
      [21]
      X.P. Wang, T.C. Sun, J. Kou, Z.C. Li, and Y. Tian, Feasibility of co-reduction roasting of a saprolitic laterite ore and waste red mud, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 591. doi: 10.1007/s12613-018-1606-7
      [22]
      X.P. Wang, T.C. Sun, S.C. Wu, C. Chen, J. Kou, and C.Y. Xu, A novel utilization of Bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel, J. Cleaner Prod., 216(2019), p. 33. doi: 10.1016/j.jclepro.2019.01.176
      [23]
      X.P. Wang, T.C. Sun, S.C. Wu, T.Y. Hu, and L.K. Rong, Effects and mechanism of Bayer red mud on co-reduction with a saprolitic laterite ore to prepare ferronickel, Physicochem. Probl. Miner. Process., 56(2020), No. 4, p. 641.
      [24]
      X.S. Guo, C.Y. Xu, Y.S. Wang, X.H. Li, and T.C. Sun, Recovery of nickel and iron from low-grade laterite ore and red mud using co-reduction roasting: Industrial-scale test, Physicochem. Probl. Miner. Process., 57(2021), No. 3, p. 61. doi: 10.37190/ppmp/135436
      [25]
      V. Nemanova, A. Abedini, T. Liliedahl, and K. Engvall, Co-gasification of petroleum coke and biomass, Fuel, 117(2014), p. 870. doi: 10.1016/j.fuel.2013.09.050
      [26]
      Z.Q. Wu, Y.W. Li, D.H. Xu, and H.Y. Meng, Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution, Fuel, 236(2019), p. 43. doi: 10.1016/j.fuel.2018.08.116
      [27]
      H.Y. Zhao, Y.H. Li, Q. Song, S.C. Liu, L. Ma, and X.Q. Shu, Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three iron ores: Effect of iron ore types on the product distribution, carbon-deposited iron ore reactivity and its mechanism, Fuel, 286(2021), art. No. 119398. doi: 10.1016/j.fuel.2020.119398
      [28]
      S.M. Jung, Thermogravimetry and reaction gas analysis of the carbothermic reduction of titanomagnetite ores with char, ISIJ Int., 54(2014), No. 4, p. 781. doi: 10.2355/isijinternational.54.781
      [29]
      Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152. doi: 10.1007/s12613-019-1719-7
      [30]
      I. Sohn and R.J. Fruehan, The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part I. The role and kinetics of volatile reduction, Metall. Mater. Trans. B, 36(2005), No. 5, p. 605. doi: 10.1007/s11663-005-0051-y
      [31]
      P. Yuan, B.X. Shen, D.P. Duan, G. Adwek, X. Mei, and F.J. Lu, Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process, Energy, 141(2017), p. 472. doi: 10.1016/j.energy.2017.09.058

    Catalog


    • /

      返回文章
      返回