留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(4)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  645
  • HTML全文浏览量:  241
  • PDF下载量:  46
  • 被引次数: 0
Wei Chen, Shenghua Yin, Qing Song, Leiming Wang, and Xun Chen, Enhanced copper recovery from low grade copper sulfide ores through bioleaching using residues produced by fermentation of agricultural wastes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2136-2143. https://doi.org/10.1007/s12613-021-2392-1
Cite this article as:
Wei Chen, Shenghua Yin, Qing Song, Leiming Wang, and Xun Chen, Enhanced copper recovery from low grade copper sulfide ores through bioleaching using residues produced by fermentation of agricultural wastes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2136-2143. https://doi.org/10.1007/s12613-021-2392-1
引用本文 PDF XML SpringerLink
研究论文

利用农业废弃物发酵产生的残渣提高低品位硫化铜矿生物浸出铜的回收率

  • 通讯作者:

    尹升华    E-mail: csuysh@126.com

文章亮点

  • (1) 系统地研究了添加农业废弃物发酵产生的残渣对硫化铜矿生物浸出的影响规律。
  • (2) 揭示了铜浸出率、细菌群落和农业废弃物发酵产生的残渣之间的关系。
  • (3) 总结并提出了添加农业废弃物发酵产生的残渣能够促进硫化铜矿生物浸出的潜在机理。
  • 生物浸出回收低品位硫化铜矿中的铜金属具有操作简单、低能耗、节约经济等优点,低品位硫化铜矿生物浸出效率低是其面临的主要问题之一。本文为了促进生物浸出效率,研究了农业废弃物发酵产生的残渣对低品位硫化铜矿石生物浸出、铜浸出率和细菌群落的影响。研究结果表明,添加适量农业废弃物发酵产生的残渣有助于低品位硫化铜矿的生物浸出,这主要是通过减少Fe3+水解形成的钝化层来实现的。浸矿过程中添加5 g·L1农业废弃物发酵产生的残渣后,铜浸出率提高到了78.35%,细菌浓度提高到了每毫升9.56 107个。同时,通过16S rDNA分析可知,添加农业废弃物发酵产生的残渣可以影响微生物群落。添加农业废弃物发酵产生的残渣后,各个实验样本间差异变大,最大值达到0.375。在生物浸矿实验过程中,添加5 g·L1农业废弃物发酵产生的残渣的实验样本中Acidithiobacillus ferrooxidans所占比例最高,达到了28.63%。
  • Research Article

    Enhanced copper recovery from low grade copper sulfide ores through bioleaching using residues produced by fermentation of agricultural wastes

    + Author Affiliations
    • Effects of residues produced by agricultural wastes fermentation (AWF) on low grade copper sulfide ores bioleaching, copper recovery, and microbial community were investigated. The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching, which may be mainly realized through reducing the passivation layer formed by Fe3+ hydrolysis. Improved copper recovery (78.35%) and bacteria concentration (9.56 × 107 cells·mL−1) were yielded in the presence of 5 g·L−1 AWF. The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF. Bacteria proportion, such as Acidithiobacillus ferrooxidans, Moraxella osloensis, and Lactobacillus acetotolerans changed distinctly. Great difference between samples was showed according to beta diversity index, and the maximum value reached 0.375. Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process, and that of sample in the presence of 5 g·L−1 AWF reached 28.63%. The results should show reference to application of agricultural wastes and low grade copper sulfide ores.
    • loading
    • [1]
      X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
      [2]
      S.H. Yin, W. Chen, X.L. Fan, J.M. Liu, and L.B. Wu, Review and prospects of bioleaching in the Chinese mining industry, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1397. doi: 10.1007/s12613-020-2233-7
      [3]
      A. Elshkaki, T.E. Graedel, L. Ciacci, and B.K. Reck, Copper demand, supply, and associated energy use to 2050, Global Environ. Change, 39(2016), p. 305. doi: 10.1016/j.gloenvcha.2016.06.006
      [4]
      B.W. Schipper, H.C. Lin, M.A. Meloni, K. Wansleeben, R. Heijungs, and E.v.d.Voet, Estimating global copper demand until 2100 with regression and stock dynamics, Resour. Conserv. Recycl., 132(2018), p. 28. doi: 10.1016/j.resconrec.2018.01.004
      [5]
      Z.H. Sun, X.D. Xie, P. Wang, Y.A. Hu, and H.F. Cheng, Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China, Sci. Total. Environ., 639(2018), p. 217. doi: 10.1016/j.scitotenv.2018.05.176
      [6]
      S.H. Yin, W. Chen, and Y.T. Wang, Effect of mixed bacteria on cemented tailings backfill: Economic potential to reduce binder consumption, J. Hazard. Mater., 411(2021), art. No. 125114. doi: 10.1016/j.jhazmat.2021.125114
      [7]
      S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605. doi: 10.1016/j.biortech.2019.121605
      [8]
      W. Chen, S.H. Yin, Y. Qi, X. Chen, and L.M. Wang, Effect of additives on bioleaching of copper sulfide ores, J. Cent. South. Univ., 50(2019), No. 7, p. 1507.
      [9]
      J.L. Xia, J.J. Song, H.C. Liu, Z.Y. Nie, L. Shen, P. Yuan, C.Y. Ma, L. Zheng, and Y.D. Zhao, Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES, Hydrometallurgy, 180(2018), p. 26. doi: 10.1016/j.hydromet.2018.07.008
      [10]
      W. Chen, S.H. Yin, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 59. doi: 10.1007/s12613-020-2125-x
      [11]
      K.A. Nguyen, D. Borja, J. You, G. Hong, H. Jung, and H. Kim, Chalcopyrite bioleaching using adapted mesophilic microorganisms: Effects of temperature, pulp density, and initial ferrous concentrations, Mater. Trans., 59(2018), No. 11, p. 1860. doi: 10.2320/matertrans.M2018247
      [12]
      C.M. Ai, P.P. Sun, A.X. Wu, X. Chen, and C. Liu, Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 274. doi: 10.1007/s12613-019-1735-7
      [13]
      S.J. Ahmadi, M. Outokesh, M. Hosseinpour, and T. Mousavand, A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads, Particuology, 9(2011), No. 5, p. 480. doi: 10.1016/j.partic.2011.02.010
      [14]
      S.H. Yin, W. Chen, J.M. Liu, and Q. Song, Agglomeration experiment of secondary copper sulfide ore, Chin. J. Eng., 41(2019), No. 9, p. 1127.
      [15]
      D. Bevilaqua, H. Lahti, P.H. Suegama, O.G. Jr, A.V. Benedetti, J.A. Puhakka, and O.H. Tuovinen, Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors, Hydrometallurgy, 138(2013), p. 1. doi: 10.1016/j.hydromet.2013.06.008
      [16]
      Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, and Y. Zhang, Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review, Chemosphere, 211(2018), p. 235. doi: 10.1016/j.chemosphere.2018.06.179
      [17]
      S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen, and N. Supanchaiyamat, Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal, J. Clean. Prod., 172(2018), p. 1128. doi: 10.1016/j.jclepro.2017.10.210
      [18]
      Y.N. Guan, G.Y. Chen, Z.J. Cheng, B.B. Yan, and L.A. Hou, Air pollutant emissions from straw open burning: A case study in Tianjin, Atmos. Environ., 171(2017), p. 155. doi: 10.1016/j.atmosenv.2017.10.020
      [19]
      H.Y. Bian, Y. Gao, J. Luo, L. Jiao, W.B. Wu, G.G. Fang, and H.Q. Dai, Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials, Waste Manage., 91(2019), p. 1. doi: 10.1016/j.wasman.2019.04.052
      [20]
      H.S. Qi, Y. Zhao, X.Y. Zhao, T.X. Yang, Q.L. Dang, J.Q. Wu, P. Lv, H. Wang, and Z.M. Wei, Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration, Bioresour. Technol., 299(2020), art. No. 122596. doi: 10.1016/j.biortech.2019.122596
      [21]
      E.S. Gaballah, A.E.F. Abomohra, C. Xu, M. Elsayed, T.K. Abdelkader, J.C. Lin, and Q.X. Yuan, Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure, Bioresour. Technol., 309(2020), art. No. 123311. doi: 10.1016/j.biortech.2020.123311
      [22]
      S. Panda, A. Biswal, S. Mishra, P.K. Panda, N. Pradhan, U. Mohapatra, L.B. Sukla, B.K. Mishra, and A.Akcil, Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy, Hydrometallurgy, 153(2015), p. 98. doi: 10.1016/j.hydromet.2015.02.006
      [23]
      W. Chen, S.H. Yin, A.X. Wu, L.M. Wang, and X. Chen, Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater, Bioresour. Technol., 297(2020), art. No. 122453. doi: 10.1016/j.biortech.2019.122453
      [24]
      V. Dollhofer, T.M. Callaghan, G.W. Griffith, M. Lebuhn, and J. Bauer, Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants, Bioresour. Technol., 235(2017), p. 131. doi: 10.1016/j.biortech.2017.03.116
      [25]
      F.P. Casciatori and J.C. Thoméo, Heat transfer in packed-beds of agricultural waste with low rates of air flow applicable to solid-state fermentation, Chem. Eng. Sci., 188(2018), p. 97. doi: 10.1016/j.ces.2018.05.024
      [26]
      N. Hiroyoshi, H. Miki, T. Hirajima, and M. Tsunekawa, Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions, Hydrometallurgy, 60(2001), No. 3, p. 185. doi: 10.1016/S0304-386X(00)00155-9

    Catalog


    • /

      返回文章
      返回