留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  797
  • HTML全文浏览量:  331
  • PDF下载量:  44
  • 被引次数: 0
Yao Yao, Di Wu, Xiaofeng Zhao, and Fan Yang, Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2–YO1.5–TaO2.5 thermal barrier coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2189-2200. https://doi.org/10.1007/s12613-021-2394-z
Cite this article as:
Yao Yao, Di Wu, Xiaofeng Zhao, and Fan Yang, Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2–YO1.5–TaO2.5 thermal barrier coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2189-2200. https://doi.org/10.1007/s12613-021-2394-z
引用本文 PDF XML SpringerLink
研究论文

大气等离子喷涂ZrO2–YO1.5–TaO2.5热障涂层的非平衡晶界钽偏析失效机理

  • 通讯作者:

    赵晓峰    E-mail: xiaofengzhao@sjtu.edu.cn

    杨帆    E-mail: fanyang_0123@sjtu.edu.cn

  • ZrO2–YO1.5–TaO2.5(ZYTO)三元体系因其低的热导率、稳定的四方相结构和铁弹性增韧机制,成为了热障涂层陶瓷层候补材料中的研究热点。然而,目前ZYTO材料的研究主要集中在块体结构及性能方面,对于其作为热障涂层实际应用的结构及性能却鲜有报道。本文旨在系统地研究ZYTO热障涂层在高温服役过程中的结构及性能演变,并明确其高温失效机理。本文通过大气等离子喷涂方法制备了ZYTO热障涂层,并研究了其在1150°C下的热循环性能及微观结构演变。研究结果表明,尽管ZYTO块体材料具有良好的热学和力学性能,但是大气等离子喷涂ZYTO热障涂层却表现出极短的热循环寿命。这主要归因于在超高温的大气等离子喷涂过程中Ta元素有限的溶解度以及急速冷却所伴随的非平衡晶界Ta偏析现象,导致 ZYTO热障涂层发生了从稳定四方相到亚稳四方相和立方相的相变过程。相变过程带来了~0.74vol%的体积收缩,使得涂层中亚稳四方相和立方相的相界处萌生了大量微裂纹。此外,具有大量晶界Ta偏析的立方相表现出明显的晶间脆化,显著降低了涂层的结合强度(~5.3 MPa),使得大气等离子喷涂ZYTO热障涂层过早失效。
  • Research Article

    Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2–YO1.5–TaO2.5 thermal barrier coatings

    + Author Affiliations
    • ZrO2–YO1.5–TaO2.5 (ZYTO) is a promising top-coat material for thermal barrier coatings (TBCs). The bulk properties of ZYTO have been reported by several studies, but its performances as TBCs are less-well understood. In this work, ZYTO TBCs were prepared by air plasma spraying (APS) and their thermal cycling performances were investigated at 1150°C. Despite of the good bulk properties, APS ZYTO TBCs present an extremely short thermal fatigue life. This is attributed to the non-equilibrium grain-boundary segregation of TaO2.5 induced by limited solubility and rapid quenching during APS process, resulting in a tetragonal (t) to cubic (c) and metastable-tetragonal (tm) phase transformation in ZYTO TBCs. The volume shrinkage (~0.74vol%) of phase transformation leads to many cracks at the c/tm phase boundaries after deposition. On the other hand, the formation of cubic phase with massive grain-boundary Ta segregation induces a large intergranular embrittlement and a weak bonding strength (~5.3 MPa), resulting in the premature failure of the ZYTO TBCs.
    • loading
    • [1]
      D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res., 33(2003), No. 1, p. 383. doi: 10.1146/annurev.matsci.33.011403.113718
      [2]
      D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bull., 37(2012), No. 10, p. 891. doi: 10.1557/mrs.2012.232
      [3]
      N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296(2002), No. 5566, p. 280. doi: 10.1126/science.1068609
      [4]
      A.G. Evans, D.R. Clarke, and C.G. Levi, The influence of oxides on the performance of advanced gas turbines, J. Eur. Ceram. Soc., 28(2008), No. 7, p. 1405. doi: 10.1016/j.jeurceramsoc.2007.12.023
      [5]
      C. Mercer, J.R. Williams, D.R. Clarke, and A.G. Evans, On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t') yttria-stabilized zirconia, Proc. R. Soc. A., 463(2007), No. 2081, p. 1393. doi: 10.1098/rspa.2007.1829
      [6]
      L. Zhou, Y.F. Zhang, P. Yi, Y. Wen, C.F. Dong, L.M. Meng, and S.F. Yang, Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al2O3/BN dental ceramics, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1854. doi: 10.1007/s12613-021-2324-0
      [7]
      K. Jithesh and M. Arivarasu, Comparative studies on the hot corrosion behavior of air plasma spray and high velocity oxygen fuel coated Co-based L605 superalloys in a gas turbine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 649. doi: 10.1007/s12613-019-1943-1
      [8]
      P.P. Wang, G.Q. Chen, W.J. Li, H. Li, B.Y. Ju, M. Hussain, W.S. Yang, and G.H. Wu, Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
      [9]
      J. Chevalier, L. Gremillard, A.V. Virkar, and D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends, J. Am. Ceram. Soc., 92(2009), No. 9, p. 1901. doi: 10.1111/j.1551-2916.2009.03278.x
      [10]
      R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on advanced thermal barrier coatings, Surf. Coat. Technol., 205(2010), No. 4, p. 938. doi: 10.1016/j.surfcoat.2010.08.151
      [11]
      X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal stability of lanthanum zirconate plasma-sprayed coating, J. Am. Ceram. Soc., 84(2001), No. 9, p. 2086.
      [12]
      C.M. Wang, L. Guo, Y. Zhang, X.X. Zhao, and F.X. Ye, Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics, Ceram. Int., 41(2015), No. 9, p. 10730. doi: 10.1016/j.ceramint.2015.05.008
      [13]
      K. Ren, Q.K. Wang, G. Shao, X.F. Zhao, and Y.G. Wang, Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scripta Mater., 178(2020), p. 382. doi: 10.1016/j.scriptamat.2019.12.006
      [14]
      D.J. Kim and T.Y. Tien, Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2–Y2O3–Ta2O5, J. Am. Ceram. Soc., 74(1991), No. 12, p. 3061. doi: 10.1111/j.1151-2916.1991.tb04302.x
      [15]
      C.A. Macauley, A.N. Fernandez, and C.G. Levi, Phase equilibria in the ZrO2–YO1.5–TaO2.5 system at 1500°C, J. Eur. Ceram. Soc., 37(2017), No. 15, p. 4888. doi: 10.1016/j.jeurceramsoc.2017.06.031
      [16]
      C.A. Macauley, A.N. Fernandez, J.S. Van Sluytman, and C.G. Levi, Phase equilibria in the ZrO2–YO1.5–TaO2.5 system at 1250°C, J. Eur. Ceram. Soc., 38(2018), No. 13, p. 4523. doi: 10.1016/j.jeurceramsoc.2018.06.010
      [17]
      P. Li, I.W. Chen, and J.E. Penner-Hahn, Effect of dopants on zirconia stabilization-an X-ray absorption study: III, charge-compensating dopants, J. Am. Ceram. Soc., 77(1994), No. 5, p. 1289. doi: 10.1111/j.1151-2916.1994.tb05404.x
      [18]
      S. Shian, P. Sarin, M. Gurak, M. Baram, W.M. Kriven, and D.R. Clarke, The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying, Acta Mater., 69(2014), p. 196. doi: 10.1016/j.actamat.2014.01.054
      [19]
      F.M. Pitek and C.G. Levi, Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system, Surf. Coat. Technol., 201(2007), No. 12, p. 6044. doi: 10.1016/j.surfcoat.2006.11.011
      [20]
      Y. Shen, R.M. Leckie, C.G. Levi, and D.R. Clarke, Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5- and YbO1.5 + TaO2.5-stabilized tetragonal zirconia ceramics, Acta Mater., 58(2010), No. 13, p. 4424. doi: 10.1016/j.actamat.2010.04.040
      [21]
      A.M. Limarga, S. Shian, R.M. Leckie, C.G. Levi, and D.R. Clarke, Thermal conductivity of single- and multi-phase compositions in the ZrO2–Y2O3–Ta2O5 system, J. Eur. Ceram. Soc., 34(2014), No. 12, p. 3085. doi: 10.1016/j.jeurceramsoc.2014.03.013
      [22]
      J.S. Van Sluytman, S. Krämer, V.K. Tolpygo, and C.G. Levi, Microstructure evolution of ZrO2–YbTaO4 thermal barrier coatings, Acta Mater., 96(2015), p. 133. doi: 10.1016/j.actamat.2015.06.007
      [23]
      S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, R. Vaβen, D. Stöver, and M.J. Mayo, Ta2O5/Nb2O5 and Y2O3 Co-doped zirconias for thermal barrier coatings, J. Am. Ceram. Soc., 87(2004), No. 3, p. 431. doi: 10.1111/j.1551-2916.2004.00431.x
      [24]
      F.W. Guo, C. Xing, G.W. Wang, Z.H. Zou, X. Wang, Q. Zhang, X.F. Zhao, and P. Xiao, Hollow ceramic microspheres prepared by combining electro-spraying with non-solvent induced phase separation method: A promising feedstock for thermal barrier coatings, Mater. Des., 139(2018), p. 343. doi: 10.1016/j.matdes.2017.11.022
      [25]
      F. Traeger, R. Vaßen, K.H. Rauwald, and D. Stöver, Thermal cycling setup for testing thermal barrier coatings, Adv. Eng. Mater., 5(2003), No. 6, p. 429. doi: 10.1002/adem.200300337
      [26]
      K.Y. Park, B.I. Yang, S.H. Jeon, H.M. Park, and Y.G. Jung, Variation of thermal barrier coating lifetime characteristics with thermal durability evaluation methods, J. Therm. Spray Technol., 27(2018), No. 8, p. 1436. doi: 10.1007/s11666-018-0784-1
      [27]
      W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564. doi: 10.1557/JMR.1992.1564
      [28]
      Y.F. Wang and P. Xiao, The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics, Mater. Sci. Eng. A, 604(2014), p. 34. doi: 10.1016/j.msea.2014.03.010
      [29]
      G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. Soc., 64(1981), No. 9, p. 533. doi: 10.1111/j.1151-2916.1981.tb10320.x
      [30]
      T. Xu, Interfacial segregation and embrittlement, [in] Reference Module in Materials Science and Materials Engineering, Elsevier, Amsterdam, 2016.
      [31]
      X.R. Ren and W. Pan, Mechanical properties of high-temperature-degraded yttria-stabilized zirconia, Acta Mater., 69(2014), p. 397. doi: 10.1016/j.actamat.2014.01.017
      [32]
      W.G. Mao, J. Wan, C.Y. Dai, J. Ding, Y. Zhang, Y.C. Zhou, and C. Lu, Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique, Surf. Coat. Technol., 206(2012), No. 21, p. 4455. doi: 10.1016/j.surfcoat.2012.02.060
      [33]
      C. Friedrich, R. Gadow, and T. Schirmer, Lanthanum hexaaluminate—a new material for atmospheric plasma spraying of advanced thermal barrier coatings, J. Therm. Spray Technol., 10(2001), No. 4, p. 592. doi: 10.1361/105996301770349105
      [34]
      R. Gadow and M. Lischka, Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications—materials and process development, Surf. Coat. Technol., 151-152(2002), p. 392. doi: 10.1016/S0257-8972(01)01642-5
      [35]
      S.L. Zhang, C.X. Li, and C.J. Li, Dominant factors influencing the electrochemical performance of plasma-sprayed LSGM electrolyte, ECS Trans., 68(2015), No. 1, p. 433. doi: 10.1149/06801.0433ecst
      [36]
      J.A. Krogstad, S. Krämer, D.M. Lipkin, C.A. Johnson, D.R.G. Mitchell, J.M. Cairney, and C.G. Levi, Phase stability of t'-zirconia-based thermal barrier coatings: Mechanistic insights, J. Am. Ceram. Soc., 94(2011), Suppl. 1, p. s168.
      [37]
      A.K. Bhattacharya, V. Shklover, W. Steurer, G. Witz, H.P. Bossmann, and O. Fabrichnaya, Ta2O5–Y2O3–ZrO2 system: Experimental study and preliminary thermodynamic description, J. Eur. Ceram. Soc., 31(2011), No. 3, p. 249. doi: 10.1016/j.jeurceramsoc.2010.09.009
      [38]
      C.G. Zheng and A.R. West, Compound and solid-solution formation, phase equilibria and electrical properties in the ceramic system ZrO2–La2O3–Ta2O5, J. Mater. Chem., 1(1991), No. 2, p. 163. doi: 10.1039/JM9910100163
      [39]
      T.R. Anthony, Solute segregation in vacancy gradients generated by sintering and temperature changes, Acta Metall., 17(1969), No. 5, p. 603. doi: 10.1016/0001-6160(69)90120-5
      [40]
      J. Kameda and T.E. Bloomer, Kinetics of grain-boundary segregation and desegregation of sulfur and phosphorus during post-irradiation annealing, Acta Mater., 47(1999), No. 3, p. 893. doi: 10.1016/S1359-6454(98)00397-8
      [41]
      T.D. Xu, The critical time and critical cooling rate of non-equilibrium grain-boundary segregations, J. Mater. Sci. Lett., 7(1988), No. 3, p. 241. doi: 10.1007/BF01730183
      [42]
      P. Fauchais, Understanding plasma spraying, J. Phys. D: Appl. Phys., 37(2004), No. 9, p. R86. doi: 10.1088/0022-3727/37/9/R02
      [43]
      H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, and M. Mori, Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, 176(2005), No. 5-6, p. 613. doi: 10.1016/j.ssi.2004.08.021
      [44]
      A. Loganathan and A.S. Gandhi, Effect of high-temperature aging on the fracture toughness of ytterbia-stabilized t' zirconia, Scripta Mater., 67(2012), No. 3, p. 285. doi: 10.1016/j.scriptamat.2012.05.001
      [45]
      A. Portinha, V. Teixeira, J. Carneiro, M.G. Beghi, C.E. Bottani, N. Franco, R. Vassen, D. Stoever, and A.D. Sequeira, Residual stresses and elastic modulus of thermal barrier coatings graded in porosity, Surf. Coat. Technol., 188-189(2004), p. 120. doi: 10.1016/j.surfcoat.2004.08.014
      [46]
      V. Lughi and D.R. Clarke, Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings, J. Am. Ceram. Soc., 88(2005), No. 9, p. 2552. doi: 10.1111/j.1551-2916.2005.00452.x
      [47]
      A.C. Karaoglanli, H. Dikici, and Y. Kucuk, Effects of heat treatment on adhesion strength of thermal barrier coating systems, Eng. Fail. Anal., 32(2013), p. 16. doi: 10.1016/j.engfailanal.2013.02.029

    Catalog


    • /

      返回文章
      返回