留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1283
  • HTML全文浏览量:  284
  • PDF下载量:  157
  • 被引次数: 0
Kun Yang, Hucheng Pan, Sen Du, Man Li, Jingren Li, Hongbo Xie, Qiuyan Huang, Huajun Mo, and Gaowu Qin, Low-cost and high-strength Mg−Al−Ca−Zn−Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1396-1405. https://doi.org/10.1007/s12613-021-2395-y
Cite this article as:
Kun Yang, Hucheng Pan, Sen Du, Man Li, Jingren Li, Hongbo Xie, Qiuyan Huang, Huajun Mo, and Gaowu Qin, Low-cost and high-strength Mg−Al−Ca−Zn−Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1396-1405. https://doi.org/10.1007/s12613-021-2395-y
引用本文 PDF XML SpringerLink
研究论文

低成本高强韧性兼备的Mg−Al−Ca−Zn−Mn变形合金

  • 通讯作者:

    潘虎成    E-mail: panhc@atm.neu.edu.cn

    莫华均    E-mail: mohjnpic@126.com

文章亮点

  • (1) 通过优化合金成分和加工工艺,同时提高了合金的强度和塑性,研究出了一种新型且低成本的Mg–Al–Ca–Zn–Mn合金。
  • (2) 合金的高强度主要与超细的动态再结晶晶粒、未再结晶区高密度的位错以及α-Mg基体中分布的高密度的纳米析出相有关。
  • (3) 合金的高塑性主要归因于较高的再结晶体积分数。
  • 本文研究了一种新型低成本兼具高强度和高塑性的Mg–Al–Ca–Zn–Mn合金。挤压态Mg–1.3Al–1.2Ca–0.5Zn–0.6Mn (wt%)合金表现出了高的强度,屈服强度达到411 MPa,同时具有优异的塑性,延伸率达到8.9 %。微观组织表明,Mg–Al–Ca–Zn–Mn合金的高强度主要与超细的动态再结晶晶粒有关,同时还与未再结晶区内高密度的残余位错以及α-Mg基体中析出的高密度纳米析出相有关。合金的高塑性可以归因于高体积分数且具有随机取向的动态再结晶晶粒,以及在未再结晶区内形成的高密度亚晶组织。
  • Research Article

    Low-cost and high-strength Mg−Al−Ca−Zn−Mn wrought alloy with balanced ductility

    + Author Affiliations
    • A novel low-cost Mg–Al–Ca–Zn–Mn-based alloy was developed to simultaneously improve its strength and ductility. The high yield strength of 411 MPa and the high elongation to failure of ~8.9% have been achieved in the as-extruded Mg–1.3Al–1.2Ca–0.5Zn–0.6Mn (wt%) sample. Microstructure characterizations showed that the high strength is mainly associated with the ultra-fined dynamically recrystallized (DRXed) grains. Moreover, high-density dislocations in the un-DRXed region and nano-precipitates are distributed among the α-Mg matrix. The high ductility property can be ascribed to the high volume fraction of DRXed grains with a much randomized texture, as well as the formations of high-density subgrains in the un-DRXed grain regions.
    • loading
    • [1]
      Y. Ali, D. Qiu, B. Jiang, F.S. Pan, and M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: A review article, J. Alloys Compd., 619(2015), p. 639. doi: 10.1016/j.jallcom.2014.09.061
      [2]
      S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnes. Alloys, 5(2017), No. 3, p. 239. doi: 10.1016/j.jma.2017.09.001
      [3]
      S. Li, J.J. Cai, Y.L. Liu, M.Q. Gao, F. Cao, and G.W. Qin, Tuning orientation of doped hematite photoanodes for enhanced photoelectrochemical water oxidation, Sol. Energy Mater. Sol. Cells, 179(2018), p. 328. doi: 10.1016/j.solmat.2017.12.028
      [4]
      H.C. Pan, R.S. Cheng, S. Du, H.B. Xie, L. Wu, Z.Y. Deng, C.L. Yang, L.F. Ma, and G.W. Qin, Achieving high strength in micro-alloyed Mg–Al–Ca–Zn–Mn–Ce alloy sheet processed by single-pass large-strain rolling, J. Mater. Eng. Perform., 29(2020), No. 11, p. 7115. doi: 10.1007/s11665-020-05188-9
      [5]
      Q.H. Wang, B. Jiang, A.T. Tang, J. Fu, Z.T. Jiang, H.R. Sheng, D.F. Zhang, G.S. Huang, and F.S. Pan, Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg–Al–Zn–Mn–Ca alloy, J. Mater. Sci. Technol., 43(2020), p. 104. doi: 10.1016/j.jmst.2020.01.018
      [6]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [7]
      M.Z. Bian, T.T. Sasaki, B.C. Suh, T. Nakata, S. Kamado, and K. Hono, A heat-treatable Mg–Al–Ca–Mn–Zn sheet alloy with good room temperature formability, Scripta Mater., 138(2017), p. 151. doi: 10.1016/j.scriptamat.2017.05.034
      [8]
      K. Wen, K. Liu, Z.H. Wang, S.B. Li, and W.B. Du, Effect of microstructure evolution on mechanical property of extruded Mg–12Gd–2Er–1Zn–0.6Zr alloys, J. Magnes. Alloys, 3(2015), No. 1, p. 23. doi: 10.1016/j.jma.2014.12.003
      [9]
      Y.M. Zhu, A.J. Morton, and J.F. Nie, Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys, Acta Mater., 60(2012), No. 19, p. 6562. doi: 10.1016/j.actamat.2012.08.022
      [10]
      M. Yuan and Z.Q. Zheng, Effects of heat treatment on microstructure and mechanical properties of Mg–2.6Sm–1.3Gd–0.6Zn–0.5Zr alloy, Mater. Sci. Technol., 30(2014), No. 3, p. 261. doi: 10.1179/1743284713Y.0000000323
      [11]
      Y.Q. Chi, M.Y. Zheng, C. Xu, Y.Z. du, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lv, Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg–8.2Gd–3.8Y–1Zn–0.4Zr (wt%) alloy, Mater. Sci. Eng. A, 565(2013), p. 112. doi: 10.1016/j.msea.2012.11.125
      [12]
      T. Homma, N. Kunito, and S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater., 61(2009), No. 6, p. 644. doi: 10.1016/j.scriptamat.2009.06.003
      [13]
      H.C. Pan, C.L. Yang, Y.T. Yang, Y.Q. Dai, D.S. Zhou, L.J. Chai, Q.Y. Huang, Q.S. Yang, S.M. Liu, Y.P. Ren, and G.W. Qin, Ultra-fine grain size and exceptionally high strength in dilute Mg–Ca alloys achieved by conventional one-step extrusion, Mater. Lett., 237(2019), p. 65. doi: 10.1016/j.matlet.2018.11.080
      [14]
      H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength-ductility synergy, Acta Mater., 186(2020), p. 278. doi: 10.1016/j.actamat.2020.01.017
      [15]
      A.Y. Zhang, R. Kang, L. Wu, H.C. Pan, H.B. Xie, Q.Y. Huang, Y.J. Liu, Z.R. Ai, L.F. Ma, Y.P. Ren, and G.W. Qin, A new rare-earth-free Mg–Sn–Ca–Mn wrought alloy with ultra-high strength and good ductility, Mater. Sci. Eng. A, 754(2019), p. 269. doi: 10.1016/j.msea.2019.03.095
      [16]
      C.Q. Liu, X.H. Chen, J. Chen, A. Atrens, and F.S. Pan, The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg–4 Zn alloy, J. Magnes. Alloys, 9(2021), No. 3, p. 1084. doi: 10.1016/j.jma.2020.03.012
      [17]
      N. Ikeo, M. Nishioka, and T. Mukai, Fabrication of biodegradable materials with high strength by grain refinement of Mg–0.3at.% Ca alloys, Mater. Lett., 223(2018), p. 65. doi: 10.1016/j.matlet.2018.03.188
      [18]
      H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Chen, C. He, L.J. Chai, Y.Z. Wang, and J.F. Nie, Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength, Acta Mater., 149(2018), p. 350. doi: 10.1016/j.actamat.2018.03.002
      [19]
      D.S. Xie, H.C. Pan, M. Li, J.R. Li, Y.P. Ren, Q.Y. Huang, C.L. Yang, L.F. Ma, and G.W. Qin, Role of Al addition in modifying microstructure and mechanical properties of Mg–1.0 wt% Ca based alloys, Mater. Charact., 169(2020), art. No. 110608. doi: 10.1016/j.matchar.2020.110608
      [20]
      M. Li, D.S. Xie, J.R. Li, H.B. Xie, Q.Y. Huang, H.C. Pan, and G.W. Qin, Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg–Ca–Al–Zn–Mn alloys: The multiple roles of nano-precipitations, Mater. Charact., 175(2021), art. No. 111049. doi: 10.1016/j.matchar.2021.111049
      [21]
      Z.T. Jiang, B. Jiang, H. Yang, Q.S. Yang, J.H. Dai, and F.S. Pan, Influence of the Al2Ca phase on microstructure and mechanical properties of Mg–Al–Ca alloys, J. Alloys Compd., 647(2015), p. 357. doi: 10.1016/j.jallcom.2015.06.060
      [22]
      T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, and S. Kamado, Strong and ductile age-hardening Mg–Al–Ca–Mn alloy that can be extruded as fast as aluminum alloys, Acta Mater., 130(2017), p. 261. doi: 10.1016/j.actamat.2017.03.046
      [23]
      Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, and N. Birbilis, Effects of calcium on strength and microstructural evolution of extruded alloys based on Mg–3Al–1Zn–0.3Mn, Metall. Mater. Trans. A, 50(2019), No. 9, p. 4344. doi: 10.1007/s11661-019-05318-6
      [24]
      Q.Y. Huang, Y. Liu, M. Tong, H.C. Pan, C.L. Yang, T.J. Luo, and Y.S. Yang, Enhancing tensile strength of Mg–Al–Ca wrought alloys by increasing Ca concentration, Vacuum, 177(2020), art. No. 109356. doi: 10.1016/j.vacuum.2020.109356
      [25]
      S.S. Nene, S. Zellner, B. Mondal, M. Komarasamy, R.S. Mishra, R.E. Brennan, and K.C. Cho, Friction stir processing of newly-designed Mg–5Al–3.5Ca–1Mn (AXM541) alloy: Microstructure evolution and mechanical properties, Mater. Sci. Eng. A, 729(2018), p. 294. doi: 10.1016/j.msea.2018.05.073
      [26]
      Z.T. Li, X.G. Qiao, C. Xu, S. Kamado, M.Y. Zheng, and A.A. Luo, Ultrahigh strength Mg–Al–Ca–Mn extrusion alloys with various aluminum contents, J. Alloys Compd., 792(2019), p. 130. doi: 10.1016/j.jallcom.2019.03.319
      [27]
      H.A. Elamami, A. Incesu, K. Korgiopoulos, M. Pekguleryuz, and A. Gungor, Phase selection and mechanical properties of permanent-mold cast Mg–Al–Ca–Mn alloys and the role of Ca/Al ratio, J. Alloys Compd., 764(2018), p. 216. doi: 10.1016/j.jallcom.2018.05.309
      [28]
      H. Liu, C. Sun, C. Wang, Y.H. Li, J. Bai, F. Xue, A.B. Ma, and J.H. Jiang, Improving toughness of a Mg2Ca-containing Mg–Al–Ca–Mn alloy via refinement and uniform dispersion of Mg2Ca particles, J. Mater. Sci. Technol., 59(2020), p. 61. doi: 10.1016/j.jmst.2020.02.092
      [29]
      M. Cihova , R. Schaublin, L.B. Hauser , S.S.A. Gerstl, C. Simson , P.J. Uggowitzer, and J.F. Lofflfler, Rational design of a lean magnesium-based alloy with high age-hardening response, Acta Mater., 158(2018), p. 214. doi: 10.1016/j.actamat.2018.07.054
      [30]
      S.W. Xu, K. Oh-Ishi, S. Kamado, F. Uchida, T. Homma, and K. Hono, High-strength extruded Mg–Al–Ca–Mn alloy, Scripta Mater., 65(2011), No. 3, p. 269. doi: 10.1016/j.scriptamat.2011.04.026
      [31]
      G. Cao and S. Kou, Hot tearing of ternary Mg−Al−Ca alloy castings, Metall. Mater. Trans. A, 37(2006), No. 12, p. 3647. doi: 10.1007/s11661-006-1059-x
      [32]
      H. Huang, H. Liu, C. Wang, J.P. Sun, J. Bai, F. Xue, J.H. Jiang, and A.B. Ma, Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg–Al–Ca–Mn alloy, J. Magnes. Alloys, 7(2019), No. 4, p. 617. doi: 10.1016/j.jma.2019.04.008
      [33]
      H.J. Wu, R.S. Cheng, J.R. Li, D.S. Xie, K. Song, H.C. Pan, and G.W. Qin, Effect of Al content on microstructure and mechanical properties of Mg–Sn–Ca alloy, Acta Metall. Sin., 56(2020), 10, p. 1423. doi: 10.11900/0412.1961.2020.00086
      [34]
      Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Texture evolution during static recrystallization of cold-rolled magnesium alloys, Acta Mater., 105(2016), p. 479. doi: 10.1016/j.actamat.2015.12.045
      [35]
      K.B. Nie, Z.H. Zhu, K.K. Deng, and J.G. Han, Effect of extrusion temperature on microstructure and mechanical properties of a low-alloying and ultra-high strength Mg–Zn–Ca–Mn matrix composite containing trace TiC nanoparticles, J. Magnes. Alloys, 8(2020), No. 3, p. 676. doi: 10.1016/j.jma.2020.04.006
      [36]
      B. Guan, Y.C. Xin, X.X. Huang, P.D. Wu, and Q. Liu, Quantitative prediction of texture effect on Hall–Petch slope for magnesium alloys, Acta Mater., 173(2019), p. 142. doi: 10.1016/j.actamat.2019.05.016
      [37]
      W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy, Scripta Mater., 65(2011), No. 11, p. 994. doi: 10.1016/j.scriptamat.2011.08.028
      [38]
      H.S. Jang, J.K. Lee, A.J.S.F. Tapia, N.J. Kim, and B.J. Lee, Activation of non-basal <c + a> slip in multicomponent Mg alloys, J. Magnes. Alloys, 10(2022), No. 2, p. 585. doi: 10.1016/j.jma.2021.03.007
      [39]
      J. She, S.B. Zhou, P. Peng, A.T. Tang, Y. Wang, H.C. Pan, C.L. Yang, and F.S. Pan, Improvement of strength-ductility balance by Mn addition in Mg–Ca extruded alloy, Mater. Sci. Eng. A, 772(2020), art. No. 138796. doi: 10.1016/j.msea.2019.138796
      [40]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [41]
      J. Hassan, T.A.H. Mojiri, T. Mojiri, and H. Mahsa, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 490. doi: 10.1007/s12613-021-2275-5
      [42]
      Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411. doi: 10.1016/j.jma.2020.08.005
      [43]
      Q.H. Wang, H.W. Zhai, L.T. Liu, H.B. Xia, B. Jing, J. Zhao, D.L. Chen, and F.S. Pan, Novel Mg–Bi–Mn wrought alloys: The effects of extrusion temperature and Mn addition on their microstructures and mechanical properties, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.11.028

    Catalog


    • /

      返回文章
      返回