留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(15)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2912
  • HTML全文浏览量:  987
  • PDF下载量:  126
  • 被引次数: 0
Fanlin Zheng, Hongsheng Chen, Yuanqi Zhang, Wenxian Wang, and Huihui Nie, Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1361-1372. https://doi.org/10.1007/s12613-021-2396-x
Cite this article as:
Fanlin Zheng, Hongsheng Chen, Yuanqi Zhang, Wenxian Wang, and Huihui Nie, Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1361-1372. https://doi.org/10.1007/s12613-021-2396-x
引用本文 PDF XML SpringerLink
研究论文

错距旋压AZ31镁合金管材的微观组织演变及耐蚀性能

  • 通讯作者:

    陈洪胜    E-mail: chenhongsheng@tyut.edu.cn

文章亮点

  • (1) 系统地研究了AZ31镁合金管材变形过程中的微观组织的演变规律。
  • (2) 讨论了多道次旋压变形AZ31镁合金管材的晶粒细化机制。
  • (3) 分析了错距旋压AZ31镁合金管材耐蚀性能的变化规律及影响机制。
  • 本文采用强力错距正旋技术制备了AZ31镁合金管材,结合电子背散射衍射和透射电镜研究了其微观结构演变,并通过电化学腐蚀试验分析了管材的耐蚀性能。结果表明:经第三道次旋压后,沿AZ31镁合金管壁厚方向的晶粒明显更均匀且更细小。随着旋压道次的增加,孪晶数量先增加后减少,而小角度晶界的变化趋势则与孪晶的相反。随着总旋压变形量的增加,变形织构先增加且{0001}晶面的c轴逐渐向管材的轴向偏转,然后变形织构降低且晶粒的取向变得更随机。在第一道次和第二道次旋压过程中,晶粒细化的主要机制为孪晶诱导的动态再结晶和晶界弓出形核长大;而第三道次变形中管材的晶粒细化机制则为高温动态回复,其微观组织以亚结构为主。经过旋压变形后,由于孪晶和高密度位错的共同作用,AZ31合金管的耐蚀性降低。
  • Research Article

    Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning

    + Author Affiliations
    • This study fabricates an AZ31 magnesium alloy tube by spinning technology-power stagger forward spinning. The microstructure evolution of the tube is investigated by combining electron backscatter diffraction and transmission electron microscopy analysis, and the corrosion resistance is measured by an electrochemical corrosion test. Results show that the grains are obviously more uniform and finer along the wall thickness’s direction of the AZ31 alloy tube after the third spinning pass. The number of twins ascends first and then descends, while the varying trend of low-angle grain boundaries (LAGBs) is opposite to that of the twins as the spinning pass increases. With the increase of the total spinning deformation, the deformation texture initially increases and the c-axis of the {0001} crystal plane gradually rotates to the axial direction of the tube; the deformation texture then decreases and the orientation of grains becomes more random. The main mechanism of grain refinement is dynamic recrystallization by the twin-induced way and bowing out of the nucleation at grain boundaries during the first and second pass. However, the dominant mechanism of the refined grain is the high-temperature dynamic recovery in the third pass, and the microstructure mainly consists of substructured grains. After the spinning deformation, the corrosion resistance of the AZ31 alloy tube decreases due to the combined effect of twins and high density-dislocations.
    • loading
    • [1]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [2]
      L. Yang, T. Wang, and C. Liu, et al., Microstructures and mechanical properties of AZ31 magnesium alloys fabricated via vacuum hot-press sintering, J. Alloys Compd., 870(2021), art. No. 159473. doi: 10.1016/j.jallcom.2021.159473
      [3]
      J.Y. Shen, L.Y. Zhang, and L.X. Hu, et al., Towards strength-ductility synergy through a novel technique of multi-pass lowered-temperature drawing in AZ31 magnesium alloys, J. Alloys Compd., 873(2021), art. No. 159604. doi: 10.1016/j.jallcom.2021.159604
      [4]
      Y.P. Wang, F. Li, Y. Wang, X.W. Li, and W.W. Fang, Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion (SE), J. Magnes. Alloys, 8(2020), p. 1304. doi: 10.1016/j.jma.2020.05.013
      [5]
      M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedstrm, Tailoring the texture of an extruded Mg sheet through constrained groove pressing for achieving low mechanical anisotropy and high yield strength, Scripta Mater., 186(2020), p. 253. doi: 10.1016/j.scriptamat.2020.05.042
      [6]
      Q.X. Xia, G.F. Xiao, H. Long, X.Q. Cheng, and B.J. Yang, A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning, Mater. Des., 59(2014), p. 516. doi: 10.1016/j.matdes.2014.03.012
      [7]
      X.W. Nie, S. Xie, H. Xu, and Y. Du, Simulation of the ultra-fine microstructure evolution during annealing of AZ31 processed by ECAP, Physica B, 405(2010), No. 8, p. 1969. doi: 10.1016/j.physb.2010.01.075
      [8]
      H.G. Svoboda and F. Vago, Superplastic behavior of AZ31 processed by ECAP, Procedia Mater. Sci., 9(2015), p. 590. doi: 10.1016/j.mspro.2015.05.034
      [9]
      J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, and W. Volk, Effect of processing route on texture and cold formability of AZ31 Mg alloy sheets processed by ECAP, Mater. Sci. Eng. A, 669(2016), p. 159. doi: 10.1016/j.msea.2016.05.027
      [10]
      T. Hosaka, S. Yoshihara, I. Amanina, and B.J. MacDonald, Influence of grain refinement and residual stress on corrosion behavior of AZ31 magnesium alloy processed by ECAP in RPMI-1640 medium, Procedia Eng., 184(2017), p. 432. doi: 10.1016/j.proeng.2017.04.114
      [11]
      F. Schwarz, C. Eilers, and L. Krüger, Mechanical properties of an AM20 magnesium alloy processed by accumulative roll-bonding, Mater. Charact., 105(2015), p. 144. doi: 10.1016/j.matchar.2015.03.032
      [12]
      A. Sabetghadam-Isfahani, H. Zalaghi, S. Hashempour, M. Fattahi, S. Amirkhanlou, and Y. Fattahi, Fabrication and properties of ZrO2/AZ31 nanocomposite fillers of gas tungsten arc welding by accumulative roll bonding, Arch. Civ. Mech. Eng., 16(2016), No. 3, p. 397. doi: 10.1016/j.acme.2016.02.005
      [13]
      P.D. Motevalli and B. Eghbali, Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 628(2015), p. 135. doi: 10.1016/j.msea.2014.12.067
      [14]
      J. Stráská, M. Janeček, J. Gubicza, T. Krajňák, E.Y. Yoon, and H.S. Kim, Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion, Mater. Sci. Eng. A, 625(2015), p. 98. doi: 10.1016/j.msea.2014.12.005
      [15]
      S.A. Torbati-Sarraf, S. Sabbaghianrad, R.B. Figueiredo, and T.G. Langdon, Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion, J. Alloys Compd., 712(2017), p. 185. doi: 10.1016/j.jallcom.2017.04.054
      [16]
      H.J. Lee, J.K. Han, and S. Janakiraman, et al., Significance of grain refinement on microstructure and mechanical properties of an Al–3% Mg alloy processed by high-pressure torsion, J. Alloys Compd., 686(2016), p. 998. doi: 10.1016/j.jallcom.2016.06.194
      [17]
      M.G. Jiang, H. Yan, and R.S. Chen, Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy, J. Alloys Compd., 650(2015), p. 399. doi: 10.1016/j.jallcom.2015.07.281
      [18]
      B.Z. Wang, C.M. Liu, Y.H. Gao, S.N. Jiang, Z.Y. Chen, and Z. Luo, Microstructure evolution and mechanical properties of Mg–Gd–Y–Ag–Zr alloy fabricated by multidirectional forging and ageing treatment, Mater. Sci. Eng. A, 702(2017), p. 22. doi: 10.1016/j.msea.2017.06.038
      [19]
      S. Kalpakjian and S. Rajagopal, Spinning of tubes: A review, J. Appl. Metalwork., 2(1982), No. 3, p. 211. doi: 10.1007/BF02834039
      [20]
      Q.X. Xia, G.F. Xiao, H. Long, X.Q. Cheng, and X.F. Sheng, A review of process advancement of novel metal spinning, Int. J. Mach. Tools Manuf., 85(2014), p. 100. doi: 10.1016/j.ijmachtools.2014.05.005
      [21]
      K.M. Xue, Y. Lu, and X.M. Zhao, A study of the rational matching relationships amongst technical parameters in stagger spinning, J. Mater. Process. Technol., 69(1997), No. 1-3, p. 167. doi: 10.1016/S0924-0136(97)00012-5
      [22]
      Z.L. Hu, S.J. Yuan, X.S. Wang, G. Liu, and H.J. Liu, Microstructure and mechanical properties of Al–Cu–Mg alloy tube fabricated by friction stir welding and tube spinning, Scripta Mater., 66(2012), No. 7, p. 427. doi: 10.1016/j.scriptamat.2011.12.006
      [23]
      M.S. Mohebbi and A. Akbarzadeh, Experimental study and FEM analysis of redundant strains in flow forming of tubes, J. Mater. Process. Technol., 210(2010), No. 2, p. 389. doi: 10.1016/j.jmatprotec.2009.09.028
      [24]
      Z.N. Lei, P.F. Gao, X.X. Wang, M. Zhan, and H.W. Li, Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming, J. Mater. Sci. Technol., 86(2021), p. 77. doi: 10.1016/j.jmst.2021.01.038
      [25]
      D.B. Shan, G.P. Yang, and W.C. Xu, Deformation history and the resultant microstructure and texture in backward tube spinning of Ti–6Al–2Zr–1Mo–1V, J. Mater. Process. Technol., 209(2009), No. 17, p. 5713. doi: 10.1016/j.jmatprotec.2009.05.034
      [26]
      X.X. Wang, P.F. Gao, M. Zhan, K. Yang, Y.D. Dong, and Y.K. Li, Development of microstructural inhomogeneity in multi-pass flow forming of TA15 alloy cylindrical parts, Chin. J. Aeronaut., 33(2020), No. 7, p. 2088. doi: 10.1016/j.cja.2019.08.021
      [27]
      X.Z. Jin, W.C. Xu, G.J. Yang, D.B. Shan, and B. Guo, Microstructure evolution and strengthening mechanisms of Mg–6Gd–4Y–0.5Zn–0.5Zr alloy during hot spinning and aging treatment, Mater. Sci. Eng. A, 827(2021), art. No. 142035. doi: 10.1016/j.msea.2021.142035
      [28]
      Z. Cao, F.H. Wang, Q. Wan, Z.Y. Zhang, L. Jin, and J. Dong, Microstructure and mechanical properties of AZ80 magnesium alloy tube fabricated by hot flow forming, Mater. Des., 67(2015), p. 64. doi: 10.1016/j.matdes.2014.11.016
      [29]
      S. Yuan, Q.X. Xia, J.C. Long, G.F. Xiao, and X.Q. Cheng, Study of the microstructures and mechanical properties of ZK61 magnesium alloy cylindrical parts with inner ribs formed by hot power spinning, Int. J. Adv. Manuf. Technol., 111(2020), No. 3-4, p. 851. doi: 10.1007/s00170-020-06091-2
      [30]
      Y.L. Zhang, F.H. Wang, J. Dong, L. Jin, C.H. Liu, and W.J. Ding, Grain refinement and orientation of AZ31B magnesium alloy in hot flow forming under different thickness reductions, J. Mater. Sci. Technol., 34(2018), No. 7, p. 1091. doi: 10.1016/j.jmst.2017.12.007
      [31]
      G.B. Hamu, D. Eliezer, and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, J. Alloys Compd., 468(2009), No. 1-2, p. 222. doi: 10.1016/j.jallcom.2008.01.084
      [32]
      L. Xiao, L. Liu, D.L. Chen, S. Esmaeili, and Y. Zhou, Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy, Mater. Sci. Eng. A, 529(2011), p. 81. doi: 10.1016/j.msea.2011.08.064
      [33]
      Y. Xu, C. Chen, X.X. Zhang, H.H. Dai, J.B. Jia, and Z.H. Bai, Dynamic recrystallization kinetics and microstructure evolution of an AZ91D magnesium alloy during hot compression, Mater. Charact., 145(2018), p. 39. doi: 10.1016/j.matchar.2018.08.028
      [34]
      J.B. Jia, Y. Xu, Y. Yang, C. Chen, W.C. Liu, L.X. Hu, and J.T. Luo, Microstructure evolution of an AZ91D magnesium alloy subjected to intense plastic straining, J. Alloys Compd., 721(2017), p. 347. doi: 10.1016/j.jallcom.2017.06.009
      [35]
      Z.F. Yan, D.H. Wang, X.L. He, W.X. Wang, H.X. Zhang, P. Dong, C.H. Li, Y.L. Li, J. Zhou, Z. Liu, and L.Y. Sun, Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect, Mater. Sci. Eng. A, 723(2018), p. 212. doi: 10.1016/j.msea.2018.03.023
      [36]
      B.K. Wen, F.H. Wang, L. Jin, and J. Dong, Fatigue damage development in extruded Mg–3Al–Zn magnesium alloy, Mater. Sci. Eng. A, 667(2016), p. 171. doi: 10.1016/j.msea.2016.05.009
      [37]
      C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, and D.L. Chen, Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature, Acta Mater., 154(2018), p. 311. doi: 10.1016/j.actamat.2018.05.057
      [38]
      K. Zhang, Z.T. Shao, and J. Jiang, Effects of twin-twin interactions and deformation bands on the nucleation of recrystallization in AZ31 magnesium alloy, Mater. Des., 194(2020), art. No. 108936. doi: 10.1016/j.matdes.2020.108936
      [39]
      S.Q. Zhu and S.P. Ringer, On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys, Acta Mater., 144(2018), p. 365. doi: 10.1016/j.actamat.2017.11.004
      [40]
      M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691. doi: 10.1016/j.jallcom.2020.153691
      [41]
      L.L. Guo and F. Fujita, Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets, J. Magnes. Alloys, 3(2015), No. 2, p. 95. doi: 10.1016/j.jma.2015.04.004
      [42]
      A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater., 49(2001), No. 7, p. 1199. doi: 10.1016/S1359-6454(01)00020-9
      [43]
      D. Kuhlmann-Wilsdorf, High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDS theory, Scripta Mater., 36(1997), No. 2, p. 173. doi: 10.1016/S1359-6462(96)00347-8
      [44]
      H.J. Zhang, D.F. Zhang, C.H. Ma, and S.F. Guo, Improving mechanical properties and corrosion resistance of Mg–6Zn–Mn magnesium alloy by rapid solidification, Mater. Lett., 92(2013), p. 45. doi: 10.1016/j.matlet.2012.10.051
      [45]
      B. Jiang, Q. Xiang, A. Atrens, J.F. Song, and F.S. Pan, Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets, Corros. Sci., 126(2017), p. 374. doi: 10.1016/j.corsci.2017.08.004
      [46]
      G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58(2012), p. 145. doi: 10.1016/j.corsci.2012.01.021
      [47]
      N.N. Aung and W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci., 52(2010), No. 2, p. 589. doi: 10.1016/j.corsci.2009.10.018
      [48]
      M. Andrei, A. Eliezer, P.L. Bonora, and E.M. Gutman, DC and AC polarisation study on magnesium alloys Influence of the mechanical deformation, Mater. Corros., 53(2002), No. 7, p. 455. doi: 10.1002/1521-4176(200207)53:7<455::AID-MACO455>3.0.CO;2-4
      [49]
      L.W. Lu, T.M. Liu, J. Chen, and Z.C. Wang, Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion, Mater. Des., 36(2012), p. 687. doi: 10.1016/j.matdes.2011.12.023
      [50]
      H.Y. Niu, K.K. Deng, K.B. Nie, F.F. Cao, X.C. Zhang, and W.G. Li, Microstructure, mechanical properties and corrosion properties of Mg–4Zn–xNi alloys for degradable fracturing ball applications, J. Alloys Compd., 787(2019), p. 1290. doi: 10.1016/j.jallcom.2019.02.089
      [51]
      J.H. Peng, Z. Zhang, C. Long, H.H. Chen, Y. Wu, J.A. Huang, W. Zhou, and Y.C. Wu, Effect of crystal orientation and { $ 10 \bar{1} 2 $} twins on the corrosion behaviour of AZ31 magnesium alloy, J. Alloys Compd., 827(2020), art. No. 154096. doi: 10.1016/j.jallcom.2020.154096
      [52]
      H.Y. Niu, K.K. Deng, K.B. Nie, C.J. Wang, W. Liang, and Y.C. Wu, Degradation behavior of Mg–4Zn–2Ni alloy with high strength and high degradation rate, Mater. Chem. Phys., 249(2020), art. No. 123131. doi: 10.1016/j.matchemphys.2020.123131
      [53]
      J.W. Seong and W.J. Kim, Development of biodegradable Mg–Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca phase by high-ratio differential speed rolling, Acta Biomater., 11(2015), p. 531. doi: 10.1016/j.actbio.2014.09.029
      [54]
      C.L. Zhang, F. Zhang, L. Song, R.C. Zeng, S.Q. Li, and E.H. Han, Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg–Li–Ca alloy, J. Alloys Compd., 728(2017), p. 815. doi: 10.1016/j.jallcom.2017.08.159
      [55]
      N. Fakhar and M. Sabbaghian, A good combination of ductility, strength, and corrosion resistance of fine-grained ZK60 magnesium alloy produced by repeated upsetting process for biodegradable applications, J. Alloys Compd., 862(2021), art. No. 158334. doi: 10.1016/j.jallcom.2020.158334

    Catalog


    • /

      返回文章
      返回