留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(15)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1201
  • HTML全文浏览量:  487
  • PDF下载量:  105
  • 被引次数: 0
Huazhe Jiao, Weilin Chen, Aixiang Wu, Yang Yu, Zhuen Ruan, Rick Honaker, Xinming Chen, and Jianxin Yu, Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2126-2135. https://doi.org/10.1007/s12613-021-2402-3
Cite this article as:
Huazhe Jiao, Weilin Chen, Aixiang Wu, Yang Yu, Zhuen Ruan, Rick Honaker, Xinming Chen, and Jianxin Yu, Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2126-2135. https://doi.org/10.1007/s12613-021-2402-3
引用本文 PDF XML SpringerLink
研究论文封面文章

通过进料口中颗粒碰撞优化提高絮凝未分级尾矿沉降效率

  • 通讯作者:

    余洋    E-mail: yuyang2005@139.com

    阮竹恩    E-mail: ustb_ruanzhuen@hotmail.com

  • 尾矿的高效浓缩是金属矿山尾矿回填和表面处理作业的先决条件。悬浮液中的超细尾矿颗粒与絮凝剂分子的有效碰撞对于絮体团聚体的形成和沉降至关重要。加料速度和絮凝剂添加方法不合理,会导致絮凝剂不能有效分散,浓缩机溢流中颗粒含量高。本文分析了紊流强度和絮凝剂添加方式对絮凝体大小、强度和运动特性的影响。为了解决浊度增加的问题,进行了中试连续浓缩试验。以全尾砂的单个颗粒和多个絮体为研究对象,建立了絮体的颗粒迭代沉降模型。通过跟踪和模拟粒子轨迹,研究了湍流强度对碰撞效果的影响。结果表明,在单颗粒沉降过程中,由于微观作用引起的颗粒粘附,在迭代过程中出现混沌现象。当紊流强度为25.99%时,尾矿絮体的最大粒径为6.21 mm,最大沉降速率为5.284 cm·s−1。尾矿絮体在受阻沉降时呈现出颗粒力链系统的多尺度结构,强弱力链的交织构成了颗粒的拓扑结构。将研究结果应用于某厂浓缩池,优化了絮凝剂的投加方式和投加速度,提高了絮凝剂沉降速度和溢流澄清度。
  • Research Article

    Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell

    + Author Affiliations
    • Efficient thickening of tailings is a prerequisite for the metal mine tailings backfill and surface disposal operation. The effective collision of ultrafine tailings particles in suspension with flocculant molecules is essential for flocs aggregates formation and settling. Unreasonable feeding speed and flocculant adding method will lead to the failure of effective dispersion of flocculant and high particle content in thickener overflow. In this work, the effect of turbulence intensity and flocculant adding method on floc size, strength, and movement characteristics are analysed. Aiming to solve the turbidity increased, a pilot-scale continuous thickening test was carried out. Taking a single particle and multiple flocs of full tailings as the research object, the particle iterative settlement model of flocs was established. The influence of turbulence intensity on collision effect is studied by tracking and simulating particle trajectory. The results show that in the process of single particle settlement, chaos appears in the iterative process owing to particle adhesion which caused by micro action. When the turbulence intensity is 25.99%, the maximum particle size of tailings floc is 6.21 mm and the maximum sedimentation rate is 5.284 cm·s−1. The tailings floc presents a multi-scale structure of particle-force chain system when hindered settling, and the interweaving of strong and weak force chains constitutes the topological structure of particles. The results are applied to a thicker in plant, the flocculant addition mode and feed rate are optimized, and the flocs settling speed and overflow clarity are improved.
    • loading
    • [1]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [2]
      B.Y. Zhang, Q.Y. He, Z.B. Lin, and Z.H. Li, Experimental study on the flow behaviour of water-sand mixtures in fractured rock specimens, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 377. doi: 10.1016/j.ijmst.2020.09.001
      [3]
      L.C. Jiang, C. Yang, and H.Z. Jiao, Ultimately exposed roof area prediction of bauxite deposit goaf based on macro joint damage, Int. J. Min. Sci. Technol., 30(2020), No. 5, p. 699. doi: 10.1016/j.ijmst.2020.06.005
      [4]
      F.B. Chen, B. Xu, H.Z. Jiao, X.M. Chen, Y.L. Shi, J.X. Wang, and Z. Li, Triaxial mechanical properties and microstructure visualization of BFRC, Constr. Build. Mater., 278(2021), art. No. 122275. doi: 10.1016/j.conbuildmat.2021.122275
      [5]
      S.H. Yin, L.M. Wang, A.X. Wu, E. Kabwe, X. Chen, and R.F. Yan, Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, J. Clean. Prod., 189(2018), p. 746. doi: 10.1016/j.jclepro.2018.04.116
      [6]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [7]
      C.W. Angle and S. Gharib, Effects of sand and flocculation on dewaterability of Kaolin slurries aimed at treating mature oil sands tailings, Chem. Eng. Res. Des., 125(2017), p. 306. doi: 10.1016/j.cherd.2017.07.014
      [8]
      H.Z. Jiao, Y.C. Wu, H. Wang, X.M. Chen, Z. Li, Y.F. Wang, B.Y. Zhang, and J.H. Liu, Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
      [9]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [10]
      X. Zheng, X.H. Xu, and K.L. Xu, Study on the risk assessment of the tailings dam break, Procedia Eng., 26(2011), p. 2261. doi: 10.1016/j.proeng.2011.11.2433
      [11]
      W.S. Ng, R. Sonsie, E. Forbes, and G.V. Franks, Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector, Miner. Eng., 77(2015), p. 64. doi: 10.1016/j.mineng.2015.02.013
      [12]
      X. Zhao, A. Fourie, and C.C. Qi, Mechanics and safety issues in tailing-based backfill: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1165. doi: 10.1007/s12613-020-2004-5
      [13]
      Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
      [14]
      Y.K. Leong, Controlling the rheology of iron ore slurries and tailings with surface chemistry for enhanced beneficiation performance and output, reduced pumping cost and safer tailings storage in dam, Miner. Eng., 166(2021), art. No. 106874. doi: 10.1016/j.mineng.2021.106874
      [15]
      R. Buscall, P.J. Scales, A.D. Stickland, H.E. Teo, and D.R. Lester, Dynamic and rate-dependent yielding in model cohesive suspensions, J. Non Newtonian Fluid Mech., 221(2015), p. 40. doi: 10.1016/j.jnnfm.2015.04.001
      [16]
      D.V. Boger, Rheology of slurries and environmental impacts in the mining industry, Annu. Rev. Chem. Biomol. Eng., 4(2013), p. 239. doi: 10.1146/annurev-chembioeng-061312-103347
      [17]
      R. Neelakantan, F. Vaezi G, and R.S. Sanders, Effect of shear on the yield stress and aggregate structure of flocculant-dosed, concentrated kaolinite suspensions, Miner. Eng., 123(2018), p. 95. doi: 10.1016/j.mineng.2018.03.016
      [18]
      F.A. Benn, P.D. Fawell, J. Halewood, P.J. Austin, A.D. Costine, W.G. Jones, N.S. Francis, D.C. Druett, and D. Lester, Sedimentation and consolidation of different density aggregates formed by polymer-bridging flocculation, Chem. Eng. Sci., 184(2018), p. 111. doi: 10.1016/j.ces.2018.03.037
      [19]
      Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead-zinc mine in China, Math. Probl. Eng., 2019(2019), art. No. 2130617.
      [20]
      M.E. Gheshlaghi, A.S. Goharrizi, and A.A. Shahrivar, Simulation of a semi-industrial pilot plant thickener using CFD approach, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 63. doi: 10.1016/j.ijmst.2013.01.010
      [21]
      R. Arjmand, M. Massinaei, and A. Behnamfard, Improving flocculation and dewatering performance of iron tailings thickeners, J. Water Process. Eng., 31(2019), art. No. 100873. doi: 10.1016/j.jwpe.2019.100873
      [22]
      C.V. Nguyen, A.V. Nguyen, A. Doi, E. Dinh, T.V. Nguyen, M. Ejtemaei, and D. Osborne, Advanced solid-liquid separation for dewatering fine coal tailings by combining chemical reagents and solid bowl centrifugation, Sep. Purif. Technol., 259(2021), art. No. 118172.
      [23]
      H. Mamghaderi, S. Aghababaei, M. Gharabaghi, M. Noaparast, B. Albijanic, and A. Rezaei, Investigation on the effects of chemical pretreatment on the iron ore tailing dewatering, Colloids Surf. A, 625(2021), art. No. 126855. doi: 10.1016/j.colsurfa.2021.126855
      [24]
      G.J. Liang, W.M. Chen, A.V. Nguyen, and T.A.H. Nguyen, Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling, J. Colloid Interface Sci., 517(2018), p. 230. doi: 10.1016/j.jcis.2018.02.006
      [25]
      F. Ballentine, M.E. Lewellyn, and S.A. Moffatt, Red mud flocculants used in the bayer process, [in] D. Donaldson and B.E. Raahauge, eds., Essential Readings in Light Metals, Springer, Cham, 2016, p. 425.
      [26]
      D. Zheng, W.D. Song, Y.Y. Tan, S. Cao, Z.L. Yang, and L.J. Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
      [27]
      Y. Zhou, Y. Gan, E.J. Wanless, G.J. Jameson, and G.V. Franks, Interaction forces between silica surfaces in aqueous solutions of cationic polymeric flocculants: Effect of polymer charge, Langmuir, 24(2008), No. 19, p. 10920. doi: 10.1021/la801109n
      [28]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [29]
      C.C. Qi, A. Fourie, Q.S. Chen, and Q.L. Zhang, A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill, J. Clean. Prod., 183(2018), p. 566. doi: 10.1016/j.jclepro.2018.02.154
      [30]
      H.Y. Wu, W.J. Wang, Y.F. Huang, G.H. Han, S.Z. Yang, S.P. Su, H. Sana, W.J. Peng, Y.J. Cao, and J.T. Liu, Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants, J. Hazard. Mater., 371(2019), p. 592. doi: 10.1016/j.jhazmat.2019.03.048
      [31]
      H.Z. Jiao, S.F. Wang, A.X. Wu, H.M. Shen, and J.D. Wang, Cementitious property of NaAlO2-activated Ge slag as cement supplement, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1594. doi: 10.1007/s12613-019-1901-y
      [32]
      H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
      [33]
      R. Bürger and A. Narváez, Steady-state, control, and capacity calculations for flocculated suspensions in clarifier-thickeners, Int. J. Miner. Process., 84(2007), No. 1-4, p. 274. doi: 10.1016/j.minpro.2007.05.009
      [34]
      F. Betancourt, R. Bürger, S. Diehl, and C. Mejías, Advanced methods of flux identification for clarifier-thickener simulation models, Miner. Eng., 63(2014), p. 2. doi: 10.1016/j.mineng.2013.09.012
      [35]
      G.A. Parsapour, M. Hossininasab, M. Yahyaei, and S. Banisi, Effect of settling test procedure on sizing thickeners, Sep. Purif. Technol., 122(2014), p. 87. doi: 10.1016/j.seppur.2013.11.001
      [36]
      Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Clean. Prod., 186(2018), p. 418. doi: 10.1016/j.jclepro.2018.03.131
      [37]
      H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Clean. Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
      [38]
      M.S. Nasser and A.E. James, Compressive and shear properties of flocculated kaolinite-polyacrylamide suspensions, Colloids Surf. A, 317(2008), No. 1-3, p. 211. doi: 10.1016/j.colsurfa.2007.10.021
      [39]
      S. Bárány, R. Meszaros, L. Marcinova, and J. Skvarla, Effect of polyelectrolyte mixtures on the electrokinetic potential and kinetics of flocculation of clay mineral particles, Colloids Surf. A, 383(2011), No. 1-3, p. 48. doi: 10.1016/j.colsurfa.2011.01.051
      [40]
      X. Ma, Effect of a low-molecular-weight polyacrylic acid on the coagulation of kaolinite particles, Int. J. Miner. Process., 99(2011), No. 1-4, p. 17. doi: 10.1016/j.minpro.2011.01.002
      [41]
      S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
      [42]
      X.M. Chen, X.F. Jin, H.Z. Jiao, Y.X. Yang, and J.H. Liu, Pore connectivity and dewatering mechanism of tailings bed in raking deep-cone thickener process, Minerals, 10(2020), No. 4, art. No. 375. doi: 10.3390/min10040375
      [43]
      Y.X. Yang, T.Q. Zhao, H.Z. Jiao, Y.F. Wang, and H.Y. Li, Potential effect of porosity evolution of cemented paste backfill on selective solidification of heavy metal ions, Int. J. Environ. Res. Public Health, 17(2020), No. 3, art. No. 814. doi: 10.3390/ijerph17030814
      [44]
      M. Fettweis, Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements, Estuarine Coastal Shelf Sci., 78(2008), No. 2, p. 426. doi: 10.1016/j.ecss.2008.01.007
      [45]
      A. Konkachbaev, N.B. Morley, and M.A. Abdou, Effect of initial turbulence intensity and velocity profile on liquid jets for IFE beamline protection, Fusion Eng. Des., 63-64(2002), p. 619. doi: 10.1016/S0920-3796(02)00274-0
      [46]
      X.Y. Wang, L. Feng, S.B. Wang, C. Chuan, and Y.Q. Zhang, Spatiotemporal chaos in coupled logistic map lattice with dynamic coupling coefficient and its application in image encryption, IEEE Access, 6(2018), p. 39705. doi: 10.1109/ACCESS.2018.2855726
      [47]
      M.S. Palmero, A.L.P. Livorati, I.L. Caldas, and E.D. Leonel, Ensemble separation and stickiness influence in a driven stadium-like billiard: A Lyapunov exponents analysis, Commun. Nonlinear Sci. Numer. Simul., 65(2018), p. 248. doi: 10.1016/j.cnsns.2018.05.024
      [48]
      M. Oda, T. Takemura, and M. Takahashi, Microstructure in shear band observed by microfocus X-ray computed tomography, Géotechnique, 54(2004), No. 8, p. 539.
      [49]
      Y.G. Ji, Q.Y. Lu, Q.X. Liu, and H.B. Zeng, Effect of solution salinity on settling of mineral tailings by polymer flocculants, Colloids Surf. A, 430(2013), p. 29. doi: 10.1016/j.colsurfa.2013.04.006

    Catalog


    • /

      返回文章
      返回